
/

A SIMULATION MODEL FOR DYNAMIC SYSTEM

* AVAILABILITY ANALYSIS

by

DISTER LEROY DEOSS, JR. D T IC
* B.S., Electrical Engineering ELECTE

Qm) University of Texas, Austin 12"(1984)
S OCT 1 21989

__ SUBMITTED TO THE DEPARTMENT OF0
NUCLEAR ENGINEERING ,

N IN PARTIAL FULFIlUMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN NUCLEAR ENGINEERING

*at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1989

c Dister LeRoy Deoss, Jr., 1989

The author hereby grants to M.I.T. and to the U. S. Government
permission to reproduce and to distribute copies of this thesis
document in whole or in part.

Signat;re of Author " "e Nl......
Department of Nuclear Engineering

May 12, 1989

Ced b ..

Nathan 0. Siu
Professor of Nuclear Engineering

Thesis Supervisor

Accepted by ..

Allan F. Henry
• _Chairman, Department Committee on Graduate Students

= prDo TATEr u °'-8
Approved for public releamol

Uu~e 8 9 10 10129

2

A SIMULATION MODEL FOR DYNAMIC SYSTEM
AVAILABILITY ANALYSIS

by

DISTER LEROY DEOSS, JR.

Submitted to the Department of Nuclear Engineering
on May 12, 1989 in partial fulfillment of the

requirements for the degree of Master of Science in
Nuclear Engineering

ABSTRACT

Current methods of system reliability analysis cannot easily evaluate
the time dependent availability of complex dynamic systems. Improved methods
are needed to treat such issues as process variables, feedback, and rule

. based interactions between components.
.A dynamic Monte Carlo system availability simulation model is

developed. 2fhe-bas+e lodel,-ead DYMCAM6is based on three fundamental
modeling objectives. First, to provide the ability to analyze time-dependent
availability of dynamic systems. Second, to provide a model which is easy
to apply and interpret. And third, to create a model which can easily be
modified to incorporate additional features as needed. The output generated
by the program includes time-dependent system unavailability information and
average sys-tem unavailaility over the duration of the simulated time period.

. DYMCAM mede-f is tested on several basic availability analysis
problems to demonstrate program capabilities. These tests include a single
component with exponential failure and repair times, a single component with
two repair states, a two-out-of-three pump failure system, and a phased
mission problem requiring the forced change of a system component state after
the start of the analysis. A modification of the DYMCAM program was also
developed to demonstrate the capability of treating continuous process
variables in a dynamic simulation model. ' 17

-Results of all testAwere compared with analytical results where
possible, and with Markovian analysis techniques in other cases. The
simulation model provided accurate unavailability results on all example
problems tested. Further work needs to be done to expand the capabilities
of the basic DYMCAM model and to continue program testing on more complex
problems.

Thesis Supervisor: Nathan 0. Siu
Title: Assistant Professor of Nuclear Engineering

* Dynamic Simulation Model 3

ACKNOWLEDGEMENTS

* My deepest appreciation is given to my thesis supervisor, Professor

Nathan Siu. Without his instruction and advice this work would not have been

possible. He provided the basic groundwork for the simulation model

* developed in this thesis, and was always available to provide guidance when

answers to problems seemed difficult to find. I also wish to acknowledge

Professor Tunc Aldemir of Ohio State University for providing data necessary

* for one of the example problems treated.

The U.S. Navy has provided the funding for my education, and I

sincerely wish to thank the Navy for giving me this opportunity. Four more

• years of service is indeed a small price to pay for the opportunity to attend

such a prestigious university. I only hope that this work may in some way

prove beneficial to the Navy.

Lastly, I wish to thank my family and friends who provided

encouragement and support when I needed it most. And a special thanks is

given to my fiancee, Laurie, who helped when should could and patiently

* endured through countless hours of watching me type on the computer without

once uttering a word of complaint.

Accesio For .

N NTIS C;4I
DTJL" TAL.
U : dJ :c .C C d L i

I B
J 1 .2'*.

*Dynamic Simulation Model 4

Table of Contents
Page

*Abstract...2

Acknowledgements...3

Table of Contents..4

*List of Figures..6

List of Tables...8

Chapter 1. Introduction

*1.1 Foreword .. 9
1.2 Background ... 10
1.3 Organization of this Work 11

Chapter 2. A Survey of Current System Reliability Analysis Techniques

*2.1 Introduction ... 13
2.2 Static Methods

2.2.1 Fault Trees.......................................13
2.2.2 GO Methodology19

2.3 Dynamic Methods
2.3.1 Event Trees.......................................25

*2.3.2 Digraphs..27
2.3.3 GO-FLOW Methodology...............................29
2.3.4 Markovian Analysis................................37
2.3.5 Monte Carlo Simulation 42

2.4 Chapter Summary .. 46

Chapter 3. DYMCAM Dynamic Simulation Model

3.1 Introduction ... 48
3.2 Simulation Language

3.2.1 An Overview.......................................49
3.2.2 SIMSCRIPT 11.5....................................59

3.3 Program Objectives..65
3.4 Model Assumptions...68
3.5 Program Description 77
3.6 Chapter Summary...87

* Chapter 4. Test Runs and Results

4.1 Introduction..89
4.2 Single Component, Single Repair State.....................90
4.3 Single C'nmponent, Dual Repair State.......................8
4.4 Two out of Three Pumps *................103

*4.5 GO-FLOW Example Problem..................................112
4.6 Chapter Summary..118

* Dynamic Simulation Model 5

Table of Contents (continued)

Chapter 5. Continuous Simulation TANK Program

5.1 Introduction .. 121
5.2 Problem Description 122
5.3 The TANK Program Modifications to DYMCAM 128
5.4 TANK Results

5.4.1 Analysis of Case A 138
5.4.2 Analysis of Case F 144
5.4.3 Simulation Analysis 149

5.5 Chapter Summary ... 163

Chapter 6. Summary and Conclusions

6.1 Discussion of Methods 166
6.2 Discussion of Results 169
6.3 Strengths and Weaknesses 171
6.4 Conclusions and Recommendations 173

References .. 175

Appendix A. DYMCAM Input File Description 178

Appendix B. DYMCAM Program Listing 190

Appendix C. TANK Program Listing 243

Appendix D. Sample Input Files 256

Appendix E. Sample Output Files 261

Dynamic Simulation Model 6

List of Figures

Page

2.1 System Reliability Analysis Methods 14

2.2 Fault Tree Example Problem 16

2.3 Fault Tree Limitation Example 18

2.4 GO Operators .. 21

2.5 GO Example Problem .. 24

2.6 Event Tree Example .. 26

2.7 GO-FLOW Operators ... 31

2.8 GO-FLOW Chart Example 34

3.1 General Component Model 52

3.2 Component History ... 53

3.3 Limited Repair Resource Modeling 64

3.4 Event Scheduling Approaches 66

3.5 Active Component .. 71

3.6 Passive Component ... 72

3.7 Valve ... 73

3.8 Check Valve ... 74

3.9 Switch .. 75

3.10 DYMCAM Program Flow Chart 80

4.1 Simulation Unavailability Time Line 92

4.2 Single Component, Single Repair State

Average Unavailability 95

4.3 Single Component, Single Repair State

Time Dependent Unavailability 97

4.4 Single Component, Dual Repair State

Average Unavailability 101

* Dynamic Simulation Model 7

List of Figures (continued)

* 4.5 Single Component, Dual Repair State

Time Dependent Unavailability 102

4.6 Two Out of Three Pumps System Diagram 105

* 4.7 Two Out Of Three Component Average Unavailability 107

4.8 Markov State Transition Diagram for

Two Out of Three System 109

* 4.9 Two Out Of Three Component Time Dependent Unavailability .110

4.10 Light Bulb Problem Diagram 113

5.1 Tank Problem Diagram 123

• 5.2 Flow Chart for TANK Program 131

5.3 TANK Program Signals 135

5.4 Tank Case A State Transition Diagram 139

* 5,5 Tank Case F State Transition Diagram 151

5.6 Case A - Cumulative Dryout Probability 153

5.7 Case A - Cumulative Overflow Probability 154

* 5.8 Case F - Cumulative Dryout Probability 159

5.9 Case F - Cumulative Overflow Probability 160

5.10 Comparison with Aldemir's Results for Case A 161

5.11 Comparison with Aldemir's Results for Case F 162

A.1 Example DYMCA Input File 179

Dynamic Simulation Model 8

List of Tables
Page

2.1 Summary of the Function of GO-FLOW operators 32

2.2 Operators Used in GO-FLOW Sample Problem 36

2.3 Signals Defined in Sample GO-FLOW Problem 36

2.4 Calculation Steps for Sample Problem 37

3.1 Advantages and Disadvantages of Simulation 50

3.2 Comparison of Languages for Discrete-Event Simulation 58

3.3 DYMCAM Subroutines .. 79

4.1 Single Component, Single Repair State

Instantaneous Unavailability 94

4.2 Single Component, Dual Repair State

Instantaneous Unavailability 100

4.3 Two Out Of Three Component Instantaneous Unavailability ..106

4.4 Light Bulb Problem Results (1,000 to 5,000 trials) 115

4.5 Light Bulb Problem Results (6,000 to 10,000 trials) 116

5.1 Flow Control Unit States as a Function of Fluid Level 124

5.2 TANK Subroutines ... 129

5.3 Case A Failure Sequence Summary 148

5.4 Case F Failure Sequence Summary 149

5.5 Markov States for Tank Case A 150

5.6 Markov Equations for Tank Case A 152

5.7 Markov States for Tank Case F 156

5.8 Markov Equations for Tank Case F 157

* Dynamic Simulation Model 9

Chapter .

Introduction

1.1 Foreword

The Engineering community has always depended upon the methods of

system reliability evaluation and prediction to solve practical engineering

problems. The use of all engineered structures and inventions is dependent

upon their ability to perform to some predetermined specifications. Thus as

technology advances and systems become more complex it becomes necessary to

derive new and better ways to ensure the reliability of such systems.

Recent examples provide abundant evidence of the need for proper

attention to reliability analysis in engineering design. One prominent case

is the failure of a seal on the booster rocket for the space shuttle

Challenger in January of 1986, which lead to the deaths of five astronauts

and a three year delay in the NASA space shuttle program. In the nuclear

industry, the failure of a pressure operated relief valve to reseat can be

argued to be at least partially the cause for the melt down of the core of

the unit 2 reactor at Three Mile Island in March 1979. And there are many

other such events in all engineering disciplines which indicate dramatically

the results of engineering systems which have not performed adequately.

The field of reliability analysis has continued to meet the challenge

in the increasingly complex technology of today's society. Over the past two

decades many advances have been made in all areas of system analysis and

* progress continues to be made. To meet the needs of future technological

advances and to provide for the highest possible levels of safety and

reliability in all aspects of engineering it is necessary for systems

* reliability analysts to continue to improve the state of the art by

Dynamic Simulation Model 10

identifying and developing new analysis and prediction techniques.

1.2 Background

Today many approaches and methods are employed in the process of system

reliability analysis. For single components which are mass produced and

essentially identical, fundamental probability laws are applied to estimate

the probability of any given component functioning correctly for a specified

number of hours. This estimate is made based on historical performance of

identical component and engineering judgement about any improvements which

may have been made.

For systems made of many components, fault trees or event trees may be

used to calculate static system reliability characteristics as described in

references D-1, M-1, and P-1. From these trees, minimal cut sets are

identified which can be evaluated numerically to provide failure rate

information for the system. For complex systems where it is necessary to

determine all combinations of conditions which may lead to a specified

deviation of a system parameter, digraph methods may be used as discussed in

reference K-1. Then fault tree synthesis methods may be used to construct

fault trees from the digraph.

For repairable systems with exponential repair and failure rates,

Markovian analysis may be used to compute time dependent system availability

and unavailability as delineated in references M-1, P-l, and G-2. Markov

systems may be solved explicitly using Laplace transforms, they may be solved

by computing eigenvalues and eigenvectors, or they may be solved by computer

numerical integration techniques. Through use of Chapman-Kolmogorov

equations it is possible to determine the probability of transition between

any two system states given that the probabilities of all intermediate

transitions are known.

Dynamic Simulation Model 11

The current methods available can be characterized as belonging to one

of two major categories. These are static reliability analysis methods, and

dynamic methods. The furmer are useful in determining system reliability at

a specified instant of time. The later give time dependent system

information in either discrete or continuous form. Static methods can give

detailed information about a system at a specific time point, but are often

not useful in evaluating dynamic systems. Dynamic methods give solutions to

time dependent problems, but are often difficult to apply. A simulation

model for dynamic system unavailabil'ty analysis can be developed which

allows for easy construction and interpretation of complex dynamic

reliability problems. Such a model could explicitly model interactions

between components and include any desired capabilities such as various

component repair states and testing and maintenance modeling features. There

is a need for such a dynamic simulation model which can easily analyze

complex systems and has the adaptability to be easily modified to handle a

wide variety of problems (e.g., non-exponential transition times, dependent

component failures, and control system reliability problems involving

continuous process variables).

1.3 Organization of this Work

The purpose of this work is to propose a simulation model for dynamic

system availability analysis. In Chapter 2 a survey is performed of the

current techniques being employed in system reliability analysis. Their

applications and limitations are addressed.

In Chapter 3 simulation languages ale discussed briefly along with the

specific characteristics of SIMSCRIPT 11.5 which is being used for this

simulation model. Program objectives are examined and all assumptions made

are explained. The chapter concludes with a complete description of the

Dynamic Simulation Model 12

dynamic simulation model.

In Chapter 4 tests are performed on the simulation program aad results

are compared with selected established methods to demonstrate the program's

validity. The procedures against which the model is compared include the GO-

FLOW method and Ma;kov chain techniques.

Chapter 5 presents a modification to the program to demonstrate the

capability to model continuous variables. Specifizlly, the model is altered

to perform the storage tank problem analyzed by Aldemir in ref. A-1 and ref.

A-2. Results are compared with a Markovian analysis and the predictions of

ref. A-1.

In Chapter 6 the results obtained with this model are summarized. The

flexibility and adaptability of the simulation model are discussed along with

limitations. The dynamic simulation model is compared with other reliability

analysis techniques and their relative strengths and weaknesses cited. The

chapter concludes with recommendations for future work.

* Dynamic Simulation Model 13

Chapter 2

A Survey of Current System Reliability Analysis Techniques

2.1 Introduction

In this chapter a review is done of some of the current methods for

reliability analysis. The literature has been surveyed and papers selected

representing a cross section of the state of the art in reliability

assessment. For ease of discussion these papers have been divided into two

general areas under which all reliability analysis work can be categorized.

These are static reliability analysis tools and dynamic system evaluation

techniques.

In the following sections the current trends in both techniques are

considered by reviewing recent literature. Figure 2.1 indicates the

reliability analysis methods to be discussed and their categorization.

* Examples are used to illustrate unique features of the various procedures,

and where appropriate, weaknesses in the methods are pointed out which could

be avoided by using a dynamic simulation analysis approach. The chapter

concludes with a summary section.

2.2 Static Methods

2.2.1 Fault Trees

* One of the most familiar models used in system reliability analysis is

the fault tree, described in reference W-1. The fault tree is a static

system evaluation tool sinct it applies only to calculating the system

* reliability at a specified instant of time. To calculate dynamic information

involves stepping forward in time and re-evaluating the tree.

Fault tree analysis is a deductive approach to system analysis and is

* used to compute the probability of an undesirable event, such as the non-

0

Dynamic Simulation Model 14

Reliability Analysis Method

Static IIyai

Fal GOEvnt Dlgraphs M a rkov
Tes MethodTre nlsl

GO-FLOW Simulation

Figure 2.1 System Reliability Analysis Methods

Dynamic Simulation Model 15

operation of a system. The fault tree is a logic structure indicating how

combinations of basic failure events can lead to the undesirable event of

interest. The fault tree is then used to assess the probability that a

system of components will be in a particular discrete state at a given point

in time.

All fault tree analysis methods use a minimum of three logic operators.

These are the AND gate, the OR gate, and the basic event or component, which

has a set of failure data associated with it. Basic events in the tree refer

to faults.

The methodology of fault tree construction consists of three steps.

Step one is to identify the system to be analyzed and what boundaries are to

be imposed. Step two is to determine the terminal failure event. This is

the "top event" to be evaluated. And step three is to work backwards through

the system to the component level to determine which combinations of

component failures lead to system failure. This third step involves

generating the logic structure known as the fault tree. Once the fault tree

has been constructed, a boolean algebra expression can be written and solved

numerically for the probability of the top event given the failure data

concerning the individual components. Automated fault tree construction is

possible using the CAT computer code as discussed by Apostolakis in reference

A-4.

Consider the example shown in Figure 2.2A. The system consists of

three valves which are supplied with flow from source A. Failure of the

system is defined as occurring when flow is not present at point B. All

three valves are normally open. In step one of constructing a fault tree for

this system, the boundaries of the system are defined as the flow source A

and the flow sink B. The second step is to determine the undesired event

Dynamic Simulation Model 16

*Valve I

Valve 3

A :B
Valve 2

a.) Diagram

NO FLOW AT B

OR

No Flow AND Valve 3At A Iclosed0
L

Valve 1 Valve 2
Closed Closed

0 b.) Fault Tree

P(No Flow to B) • P(No Flow at A) P(Valve 3 closed)
+ (P(Valve I closed)-P(Valve 2 closed))

c,) Boolean Expression

Figure 2.2 Fault Tree Example Problem

Dynamic Simulation Model 17

which for this example is loss of flow at point B. The third step is to

identify which combinations of event can lead to the "top event." For this

simple system, there will be no flow at B if valve three fails closed, if

valves one and two fail closed, or if there is no flow from the source A.

The fault tree can be constructed by tracing backwards from point B. Figure0
2.2B shows the fault tree for the example.

Based on the Boolean logic expressed by the fault tree, an expression

can be written which quantifies the probability of the top event occurring.

For the example, an approximate version of this expression is shown in Figure

2.2C. This expression can be evaluated numerically if the probabilities of

all basic events are known. For complicated systems, computer codes are

available which quantify the tree automatically.

Fault tree methods evaluate only the probability of a system being in

a specified state at a given time, thus they do not directly apply to dynamic

problems. But by thoughtful construction of a fault tree, and by evaluating

the tree over and over again it is possible to treat dynamic problems in a

discrete fashion. Repair and failure cycles can even be considered.

Important limitations do exist, however. For instance, consider the example

of Figure 2.3. The system is composed of two pumps providing flow to point

* A. Failure of the system occurs if flow is not provided by at least one of

the two pumps, both of which are normally operating. If the failure rate of

each pump depends on how many cycles of repair and failure it has been

* through, a fault tree of the system will be very clumsy (there will be a

branch for each possible cycle). Thus a fault tree is not well suited for

such a problem.

* A variation on the fault tree method is described in reference D-2 by

Dhillon and Rayapati. This method is similar to fault tree techniques but

* Dynamic Simulation Model 18

Pump 1

0 A Pump 2

a.) Diagram

No Flow
at B

AND

* PUMP 1 PUMP2UNAVAILABLE UNAVAILABL E

* b.) System Fault Tree

PUMP 1
UNAVAILABLE0

OR

Falls at Under
* time t Repair

c.) Component Fault Tree

Figure 2.3 Fault Tree Limitation Example

Dynamic Simulation Model 19

involves systems composed of three state devices in series, parallel, series-

parallel, and bridge configurations of any complexity. Any system which can

be modeled in this fashion can be simplified through a series of reduction

steps to a single equivalent three state component representing the entire

system. This me-hod assumes independence of all components.

Since a three state component is simply a model of a component which

can fail open (on) or closed (off) and must be in one of these two failed

states, or operational, 4t is clear that a fault tree can be constructed to

model the same system and identical results would be obtained. The authors

suggest this approach as possibly being of beneficial use to practical minded

reliability engineers because of its simplicity and ease of use on

appropriate problems.

2.2.2 GO Methodology

Another approach which solves for static system reliability is the GO

methodology which was developed in the mid-1960's by Kaman Sciences

Corporation. It gives results similar to fault tree evaluation computer

codes, but differs significantly in its approach and structure. References

G-1 and B-1 describe the GO procedures and a modified GO approach

respectively.

The GO methodology is a "success oriented" technique which uses an

inductive approach to determine the probability of a system being in a

specified state. The procedure combines component probabilities and

interactions to produce the probabilities of preselected output events. A

set of standardized operators is available which are used to model all of

the physical components in the system. Components are then linked using

signals which represent the probability that the system is operational up to

that point in the system diagram. This resulting GO chart in many cases

Dynamic Simulation Model 20

closely resembles a schematic diagram of the physical system layout.

There are seventeen basic operators in the GO method designed to

incorporate the majority of logic functions found in physical system

components. These operators include the three logic operators comprising the

fault tree code methods plus fourteen additional ones which provide the

capability to model the logic of most physical components with a single

operator. Figure 2.4 shows the GO operators and is taken directly from

reference G-l. For components which are not readily modeled by a simple

operator it is possible to create a "supertype" which is a compilation of

several operators to model a given component. This supertype can then be used

to model the given component at every place it appears in the system. The

object being to generate a GO chart model whose components very closely

resemble the actual system components and operation.

The method of GO analysis consists of six basic steps. First, the

system to be analyzed must be defined and all necessary information such as

schematics, system description, success criteria, logic diagrams, and

operating procedures must be gathered. Second, all inputs and outputs from

the system, and each individual component must be determined and

interrelated. A system may have many inputs and outputs unlike the fault

tree method which has one output, the terminal event. To solve an identical

problem using fault tree methods, several separate fault trees must be drawn.

Third, a functional GO chart is drawn which indicates which components are

dependent and which are independent operators. Fourth, each operator on the

functional GO chart is assigned a type from one of the seventeen basic

operators. Fifth, each operator is assigned a kind number so that if several

valves in the system are identical, the failure data may be entered once for

that "kind" of valve. Finally, the signal sequence must be identified so

Dynamic Simulation Model 21

Two-Slate Component

s

* _ _

OR GATE Triggered Generator Multiple Signal Single Signa
S2 Generator Generator

RN

Component Requiring Component Requiring Delay Generator Function Operator

Actuation to Pass SI Actuation To Inhibit S1

51 Si S 1S
S2 S2

6 7 8 91y5

S
R R

AND GATE M out of N Gate Path Splitter Multiple Input/Output
S2 Operator

S121
S1 S1 SN Si 1 SN

10 ANi1i21jjyRI IR R1 ,iR2RR
R

Linear Combination Value/Probability Gate Actuated Component Actuated Component
Generator Requiring Deactivation Requiring Deactivation

S S2 to Inhibit ti to Pass Siii S S2 S

S1 R S11 R

1 4 (1 5) 1 6 1 7

Figure 2.4 GO Operators'

From Reference G-i page 2-3.

Dynamic Simulation Model 22

that when the program runs the logical flow of the information in the model

will be the same as the actual system.

The GO approach forces the analyst to begin the modelling process after

defining system boundaries by inductively progressing from input to output

by modelling the functional relationships between hardware components to get

a successful input event to an output event. The basic events in the model

are thus hardware components. Each component or operator, depending on its

type, may exist in a variety of states, ie. open, closed, failed, failed

prematurely, etc. This allows the model to more closely resemble actual

system operation.

All signals existing in a GO analysis are numbers representing

probabilities of existence of physical quantities, including flows, voltages,

actuation signals, etc. Thus all signals have values between zero and one.

When the GO program is run the logic operators operate on the signals in much

the same fashion as the fault tree codes to produce the final output signal

strength. The output or outputs will have values between zero and one

indicating the probability of occurrence of the output event.

Figure 2.5A shows a schematic diagram of an example system containing

a fluid source, two pumps, two check valves, and a remote operated valve.

This system is modeled with GO operators in Figure 2.5B. The operators in

the GO chart contain numbers indicating which type of GO operator is being

used. The second number inside some of the operator symbols corresponds to

the specific "kind" of operator. For example, operator number 6 is used to

model both the two pumps and the motor operated valve. The two pumps are

identical and are therefore assigned the same "kind" number, which in this

case is 2. The valve is assigned a "kind" number of 4. When the GO program

is executed, an input file is used which provides failure data for each

Dynamic Simulation Model 23

separate operator "kind".

It is readily seen from this example that the GO chart provides a

system representation which very much resembles the physical plant layout.

The model shows all components of the system and shows the relationships

between them. The signals between components are numbered indicating the

order in which system analysis progresses. Thus the GO method allows for

time sequencing of events but does not provide dynamic availability

information. Once a GO chart is created and an appropriate input file

generated for computer evaluation, results are calculated in a manner very

similar to fault tree analysis. The GO program will find and quantify all

cutsets of the system, and print the minimal cutsets, if desired. The final

result provided for the example of Figure 2.5 would indicate the probability

of flow existing at point C at a specified instant of time. As with fault

tree methods, to compute the system reliability at another time point will

require a separate run of the program with a modified input file to reflect

the new component failure probabilities.

The modified GO method proposed by Billinton and Patwardhan in

reference B-1 presents simple changes to the original GO model. Since the

basic GO method assumes independence of series elements, Billinton and

Patwardhan point out that the method can lead to severe underestimation of

the system reliability. The modification proposes using equivalent

components to replace the individual components in a series system thereby

incorporating the concept of dependence into series networks. The results

are important for systems in which the failure of one series element does not

prevent the subsequent failure of another element in the series while the

first is under repair. Numerical examples illustrate the difference in

results obtained from the two approaches. Both concepts are useful tools in

Dynamic Simulation Model 24

Pump A Check

Valve A

PumpB Vave BValve

a.) System Diagram

6-6

Tank 6

6-2

Pump B CV B
b.) GO Chart

Figure 2.5 GO Example Problem

Dynamic Simulation Model 25

analyzing repairable systems.

2.3 Dynamic Methods

2.3.1 Event Trees

Event trees are an inductive logic method used to identify the various

possible outcomes of a given initiating event. The initiating event is

normally some type of system component failure event or it could be an event

external to the system. Event trees step through the possible consequences

of the initiating event, and thus can be thought of as a quasi-dynamic

reliability analysis tool since the passage of time is required between

successive events in the event tree.

To illustrate the use of event trees, consider the example of Figure

2.6 which is taken from reference M-l. The example wishes to determine the

probability of release or radioactivity from a nuclear reactor resulting from

a large loss of coolant accident. The first step in event tree analysis is

to identify the initiating event. For the example the initiating event is

a large pipe break. The next step is to identify all applicable systems

which may effect the outcome of the event. For the example, these are

electric power availability, ECCS availability, fission product removal

system availability, and containment integrity. The order in which these

systems should appear in the event tree will depend on the logical

relationship between them. Note that these logical relationships may

conflict with the temporal sequence of events. For example, if the ECCS

system depends partially on the availability of electricity, then electric

power should come first in the event tree. In some problems, the order may

be unimportant if systems are unrelated.

After all applicable systems are determined, then the success and

failure states for each system must be determined. With this information,

*Dynamic Simulation Model 26

*A BC D E
Pipe Electric ECCS Fission Containment

Break Power Product Integrity
Removal

PA

Fal* PA* P Ell

FallsPA.PDI

Succeds PD PE2 PA.PDI*PE2

PA.PCI

0E PA*PCI.P ES

PCIP PD PCI.PD 2

Iniiain PEen PA.PC1*PD2-PE4

PA PA .P1

PEI PA.PB.PES

PA .P@* PD3SP

PS PA-PO-PC2

PT PA-PU*PC2-PE7
PC2 PA*P8*PC2-PD4

PD4 PA.P9.PC2.PD4.PE8

PE8

* a.) Basic Event Tree
PA

PA-*P Dl

PD1PE2 PA *PD l*PE 2

Initatig eentPA *PCI

PA PCI PD2 PA*PCl*PD2

* PB PA *P B

b.) Reduced Event Tree
Figure 2.6 Event Tree Example 2

2 Takpn from Reference M-1 page 195.

Dynamic Simulation Model 27

the tree of Figure 2.6A can be drawn representing all basic events. Some of

the sequences shown may not be physically possible due to timing constraints

and sequential and conditional dependencies, thus the next step is to

eliminate the impossible states. The end result will be the reduced fault

tree shown in Figure 2.6B. Each branch represent a possible outcome as a

result of the initiating event. Each branch is quantified based on the

transfer probabilities indicated. Determination of these individual transfer

probabilities may involve the use of fault tree diagrams.

The example shows that event trees can be used in a limited sense to

evaluate dynamic problems. The method requires that all system states be

determined before quantification of the final state probabilities in much the

same fashion as fault tree analysis. Once the event tree is identified and

all transfer probabilities determined, calculation of terminal probabilities

is straightforward and involves only simple multiplication as indicated in

Figure 2.6. The major drawback of the event tree method is that it can not

treat systems which contain loops. For example, in Figure 2.6, if the ECCS

system fails and is then repaired it is desireable to transfer to another

branch of the event tree. This can not be done without including a separate

branch from the ECCS failed condition, which can certainly be done. However,

if the problem to be analyzed contains an infinite possibility of component

repair and failure cycles, the corresponding event tree must contain an

infinite number of branches. This is not practical and thus limits the

applicability of the event tree method to those systems which do not contain

loops leading back to an event condition through which the analysis has

already passed.

2.3.2 Digraphs

The method of digraphs is a tool used for analyzing relationships in

Dynamic Simulation Model 28

complex systems in which the desired operational state of one component may

depend on the actual state of another component in the system or upon the

level of a system process variable. These types of interactions are

characteristic of all process control problems, and digraphs are a useful

tool for analyzing causes of abnormal events in these systems. For example,

a control system may monitor the level of fluid in a storage tank which

supplies water to several different sources. Assume there are three pumps

which can provide fluid input to the tank, and that the number of pumps

operating at a given instant of time depends on the fluid level of the tank.

If the tank is nearly empty, then all three pumps may be required to be on,

while if the tank is almost full, only one, or none of the pumps may be

required. A digraph analysis of this problem will treat the interaction of

the fluid level causing pumps to turn on and off in a cause and effect type

manner.

Reference K-1 by Kohda and Henley gives a detailed description of a

digraph method. A digraph is a structure consisting of nodes and edges.

Nodes represent process variables, or certain types of failure events and

edges indicate a relation between two connected node variables. A digraph

will resemble actual system configuration and can be easily constructed from

a flowsheet of the process to be analyzed and a schematic diagram of the

equipment. Fault trees are directly synthesized from digraphs and then

analysis continues in the same manner as for fault tree methods. The

additional capability is that the digraphs are designed to treat continuously

variable processes. This procedure is ideally suited for process control

type problems where component states depend on the value of a continuously

varying signal, and where there is a need to determine the iikelihood of

deviating from steady state by a given amount. Results of the analysis

Dynamic Simulation Model 29

provide information on the probability that the system is in a given state

at specified discrete time points. However, Kohda and Henley state in ref.

K-1 that, in their view, none of the automated fault tree construction

methods available, including the new one they propose, are successful in

providing complete, consistent, and correct failure modes without human

intervention and judgement. Thus the method of digraphs may involve

considerable work to construct the digraph and then compose an appropriate

fault tree.

Digraphs are a useful tool for identifying the minimal combinations of

disturbance conditions which can lead to a specified undesirable condition

at a digraph node. This is especially useful for optimizing control system

design. The method includes dynamic system considerations, as the sequencing

of component and process interactions must be considered when constructing

the digraph. The analysis results obtained are not a dynamic representation

of the system unavailability, but rather a listing of disturbances which can

lead to undesirable performance of the system being analyzed. The method of

digraphs requires complete knowledge of system behavior before analysis can

begin, so that all possible system disturbance modes are identified and

included in the digraph analysis.

2.3.3 GO-FLOW Methodology

Developed by Matsuoka and Kobayashi, the GO-FLOW method was generated

in the mid-1980's as a success-oriented system analysis technique to analyze

the time dependent unavailability of phased mission problems. References

M-2 and M-3 give a detailed description of the method, philosophy, and

structure as well as several illustrative examples.

The GO-FLOW methodology is derived from the GO code and is therefore

similar to it in many respects. The GO-FLOW method uses an inductive

Dynamic Simulation Model 30

approach and a combination of ten basic operators to create a GO-FLOW chart

which very much resembles a schematic diagram of the system being modeled.

The GO-FlOW operators are shown in Figure 2.7, which is taken from reference

M-2. Table 2.1, also taken from reference M-2 summarizes the output

relationships for each of the operator types. The idea is to create a

reliability model which can be easily understood by the design engineer. The

modeling process for GO-FLOW is much the same as for the GO methodology.

The GO-FLOW chart will look similar to a GO chart except for the fact

that there are fewer basic operators available in the GO-FLOW method. All

GO-FLOW operators have corresponding operators in the GO code but the

operation of each is slightly different. Each of the seven additional

operators used by the GO code can be modeled using combinations of the other

basic operators in the GO-FLOW code.

The major difference between the two methods is the manner in which

signals between operators are treated. The signals in a GO model correspond

to the probability that a component is in a given state independent of time.

Thus, a time dependent system analysis cannot be performed. Signals can go

from "on" to "off" or vice versa but they can not go from "on" to "off" and

then back to "on." Thus it is not directly possible to incorporate repair

in a GO model. In a GO-FLOW model, on the other hand, many signals represent

probabilities, but they are functions of discrete time points. Some signals

represent only time information to cause proper activation of time dependent

operators at the proper instant during the process of the analysis. Thus a

GO-FLOW model, unlike the GO model, is time dependent. The GO model

incorporates time sequencing in its analysis but the GO-FLOW method simulates

the actual passage of time through discrete time steps. Signals in a GO

model indicate a change of state or an occurrence whereas in the GO-FLOW

Dynamic Simulation Model 31

Two-State Component Normally Closed Valve Failure of Valve

S S in Open State

0r2 P /263

R 'R 'R
OR Gate Normally Open. Valve Failure of Valve

S2 S Sin Closed State

22 P 27 P 38

R

Signal Generator AND Gate Opening and Closing ActionS2

25 S111L4 P,
R30 AND P 3

Failure of Light Bulb

S

P _35

- - R

Figure 2.7 GO-FLOW Operators3

3 Taken from Reference M-2 page 66.

Dynamic Simulation Model 32

Table 2. I

Summary of the Function of GO-FLOW Operators4

Operator ,lain Input Signal Subinput Signal
Type Intensity Intensity Output Signal Intensity

21 S(t) --- R(t) = S(t) P,

22 SI (U) .. S.(t) --- Probability that at least one input signal exists

25 --- Probability of a demand or time duration

26 S(t) P(t) RUt) = S() -0(1), 0(1) = P_
Of) = Off') + [1.0 - 0(1')) PUl).P,

27 S(t) P(t) R(0 = S(C) -0(f). O() = 1.0 - Pp.
O(t) = OWt'). [1.0 - P(t) Pj

30 5, (t), S(). S (t) --- Probability that all the input signals exist

35 Stl), S(t2)..... S(t) P1(). Pi(I.)
PZ(t,) P1,(.) RIt) = S(t).exp -X, , P,(t,)min(L.0.S(,k)/S(t)I

37 SM)P(,. (, r
P:,)..It. R() = S lexp -X , P.()

38 Si) P,())... P, (t)
P,) P.1,I) RU)0=5(0 - eP~~~'

39 Sot) P,(t) Ri Ill 0(t).
o(= Oil) + I1.0 - 0 1,)I P n).P.,

P:(f) Rt) = S)O(t). 01() = OWt [1.0- P,(1).P,j

4 Taken from Reference M-2 page 67.

Dynamic Simulation Model 33

model signals represent time dependent component state information. This is

the major point of difference between GO-FLOW and its predecessor.

With this time capability GO-FLOW has the additional potential of being

able to perform an unavailability analysis incorporating repair in the model.

To do a time dependent analysis with the GO code would require several runs

of the program and changing the input information for each separate run. The

GO method can find the time when a system changes from one state to another

but it can not analyze a system which has more than one state change.

In the GO-FLOW methodology signals correspond to the existence of physical

quantities at various points in time. Sub-input signals to certain operators

represent time information rather than probabilities and therefore can take

on values greater than one. Signals are time dependent reflecting the fact

that the GO-FLOW code is set up to perform time dependent unavailability

analysis.

Figure 2.8 shows the GO-FLOW chart for the light bulb problem analyzed

in section five of Chapter 4. This figure is taken from reference M-2. The

actual system diagram is shown in Figure 4.10 of Chapter 4. Each operator

in the GO-FLOW chart of Figure 2.8 contains an operator type number

corresponding to one of the 10 basic operators. This is the top number in

each symbol. The lower number is simply the component number assigned. Each

operator in the system must have a separate component number. Component

number 4 is shown twice in the figure because it supplies a signal to two

separate components. All signals in the system are also number sequentially

indicating the time sequence which will be used in system analysis. Table

2.2 summarizes the operators used in Figure 2.8. Table 2.3 defines the

signals of the example system. Both of these tables are from reference M-2.

Using the equations associated with each operator, as shown in Table

Dynamic Simulation Model 34

25 2 25

2 4

2S6 r 2 - 7 r 3 -5 ,

4 2 1 8e12

Figure 2.8 GO-FLOW Chart Example

Dynamic Simulation Model 35

2.1, it is possible to step through the analysis and determine the

probability that at least one light is lit at each of the designated time

points. Specifically, time points 1, 2 and 3 correspond to time t-O.O. Time

point 1 is prior to any system change, time point 2 corresponds to connecting

the battery, and time point 3 is when switch Sl is closed. Time point 4

corresponds to time t-10.0 hours, but prior to closing of switch S2, and time

point 5 corresponds to switch S2 being closed (at t-10.O hours). Time point

6 is at t-20.O hours. The output signal of each operator is determined at

each time point by applying the operator equations. Signals are evaluated

sequentially as numbered since input signals to operators must be determined

before outputs can be calculated. Time points are also evaluated

sequentially after all signals for the preceding time point are calculated,

because certain operator types require knowledge of the previous input and

output signals. These calculations are all done internally by the GO-FLOW

program, but can be done manually if desired.

For the example problem shown if Figure 2.8, which is also treated in

Chapter 4, manual calculations were performed to calculate output signal

intensities at each of the designated time points. The results indicate the

probability that the indicated signal exists at the selected time point.

These results are compared with simulaLi-in estimates in Chapter 4. Table 2.4

provides a summary of the signal strengths calculated at each of the time

points. The results shown for signal 12, the output of operator 12, are used

in Chapter 4 for comparison with the results obtained using the simulation

program method.

Dynamic Simulation Model 36

Table 2.2

Operators Used in GO-FLOW Sample Problem

Operator
Type Number Data Meaning
25 1 R(l)-O.0, Battery is connected

R(t)-l.0 (t not equal 1)
25 2 R(3)-l.0, Demand signal for switch SI to

R(t)-O0. (t not equal 3) close
25 3 R(5)-I.0, Demand signal for switch S2 to

R(t)-O.0 (t not equal 5) close
25 4 R(4)-l0.0,R(6)-l0.0, Time duration

R(t)-O.O (t not equal 4,6)
21 5 Ps - 0.9 Battery works with

probability 0.9
26 6 Ps - 0.7 Switch SI closes normally with

probability 0.7
21 7 Ps - 0.8 Light bulb LI works with

probability 0.8
35 8 X - 0.001/h Failure of LI while on
26 9 Ps - 0.7 Switch S2 closes normally with

probability 0.7
21 10 Ps - 0.8 Light bulb L2 works with

probability 0.8
35 11 A - 0.001/h Failure of L2 while on
22 12 OR gate

Table 2.3

Signals Defined in Sample GO-FLOW Problem

Signal Definition
1 Battery is connected
2 Demand signal for Si to close
3 Demand signal for S2 to close
4 Time duration
5 Battery provides power for both lights
6 Power is available at LI
7 Ll lights up without demand failure
8 LI is on
9 Power is available at L2

10 L2 lights up without demand failure
11 L2 is on
12 Either Ll or L2 is on (final signal)

Dynamic Simulation Model 37

Table 2.4

Calculation Steps for Sample Problem

Operator Signal Intensity of OutDut Signal for Time Points I to 6
Number Input Output 1 2 3 4 5 6

1 --- 1 0.0 1.0 1.0 1.0 1.0 1.0
2 --- 2 0.0 0.0 1.0 0.0 0.0 0.0
3 --- 3 0.0 0.0 0.0 0.0 1.0 0.0
4 --- 4 0.0 0.0 0.0 10.0 0.0 0.0
5 1 5 0.0 0.9 0.9 0.9 0.9 0.9
6 5,(2) 6,(5) 0.0 0.0 0.63 0.63 0.63 0.63
7 6 7,(5) 0.0 0.0 0.504 0.504 0.504 0.504
8 7,(4) 8,(5) 0.0 0.0 0.504 0.4990 0.4990 0.4940
9 5,(3) 9,(5) 0.0 0.0 0.0 0.0 0.63 0.63
10 9 10,(5) 0.0 0.0 0.0 0.0 0.504 0.504
11 10,(4) ll,(5) 0.0 0.0 0.0 0.0 0.504 0.4990
12 8,11 12 0.0 0.0 0.504 0.4990 0.7236 0.7191

2.3 Markovian Analysis

Markov models are useful in determining steady state and time dependent

availability measures. Markov analysis techniques are predominantly applied

to systems which are normally solved in continuous time. The major drawbacks

of the method are that it can not easily be used to treat phased mission

problems and the basic Markov models require all state transition rates to

be exponentially distributed.

To solve a complex phased mission problem using the Markov method would

require using Markov chains in which the probability of being in any state

is calculated up to the point where the possible states of the system are

changed using straightforward Markov analysis. Then the new states are added

to the analysis and new Markov equations are written. The results from the

first stage are used to define the initial probabilities of being in any of

the new states. The analysis progresses in time until the next point where

the state space of the system is changed by an external event such as

maintenance, testing, or a control function. The chain method can be used

Dynamic Simulation Model 38

to analyze process control system problems by discretization techniques,

however for complex problems the Markov chains may become unmanageably large.

Many fundamental system reliability and risk analysis texts such as

references B-2, D-1, M-1, and P-1 give adequate descriptions of the basic

Markov modeling techniques. The essential step is first to identify all of

the possible states the system can be in. For a system of twenty components

which can be in either an operating or a failed state there are 220 possible

system states indicating the need for reduction techniques to simplify the

problem. Thence methods often involve the use of absorbing states and simple

numerical procedures allowing for truncation and approximation of values.

Reference P-3 by Papazoglou and Gyftopoulos discusses the technique of

merging which can also be used to reduce the order of a Markov system. This,

of course, can lead to results which are not exact, but can be made to have

arbitrarily small error percentages.

Once all system states are identified, a set of first order

differential equations is written describing the rate of transfer in and out

of each state. If the transfer rates are exponential and are constant with

time, then the system is described by a set of linear, constant coefficient,

first order differential equations and can easily be solved by any one of a

number of methods. These include matrix exponentiation, Laplace transforms,

eigenvalues, and discrete time integration techniques such as the Runge-Kutta

method. For cases where state transition times are not exponential, the

system of differential equations are no longer Markovian. These non-

Markovian systems, which can be represented by discrete state spaces, may be

solvable by one of the three techniques described in ref. P-1. These include

the method of supplementary variables, the dummy states method, and the

embedded chain approach. All of these techniques involve attempts to reduce

Dynamic Simulation Model 39

the system to an equivalent Markovian problem. However, large systems which

can be explicitly modeled by these techniques are very rare and thus without

the use of simplifying assumptions or approximate mathematical procedures,

the use of these methods is extremely limited.

Current work in the area of Markovian analysis centers around two

areas. These include methods to reduce the order of the system and methods

to incorporate dynamic system characteristics for modeling systems with

phased mission scenarios. Several papers on recent work are considered here.

In reference J-l, Johnson discusses a general availability model and

basic modeling techniques. Rules for writing the state transition matrix

and its eigenvalues and eigenvectors are given. Then formulas are discussed

for computing approximate results for state probabilities based on the

eigenvalues and eigenvectors. Three fundamental cases are examined to

demonstrate the approach for determining steady state availability values.

These three cases are a system involving no repair, a system of N components

having identical repair and failure rates, and an N component system in which

only one component can be failed at a time. The paper covers basic concepts

and gives a general review of Markov modeling.

Jeong, Chang, and Kim propose applying Markovian analysis techniques

to fault tree evaluation in reference J-2. The purpose is to produce time

dependent availability results of a continuous nature directly from the fault

tree structures and to correctly incorporate component maintenance and

testing, i.e. to model dependencies on the state of the system. Their method

is to describe basic events in a modified fault tree by Markovian analysis

techniques. The new tree contains numerous Markov states and includes system

state dependencies such as whether or not components are undergoing

maintenance. This new discrete state, continuous time model is quite large,

Dynamic Simulation Model 40

thus Jeong, Chang, and Kim introduce the concept of a super component to

reduce the order of the transition matrix. These super components contain

a number of basic events from the fault tree and provide the fundamental

means by which the tree is converted to a Markovian process with P minimal

number of states to be solved for. Results provide dynamic availability data

for the system while incorporating maintenance and testing.

Reference G-2 by Gray deals with simplifying complex systems. The

method applies only to systems containing parallel active and redundant

subgroups of identical components and should prove useful in designing and

analyzing redundant systems. Each subgroup is analyzed using Markov

techniques to determine the time dependent behavior of all components in the

subgroup within the context of the subgroup as a separate unit. The

reliability of the subgroup can then be determined. From the expression

governing this relationship it is possible to calculate a mean and a standard

deviation of the subgroup time to failure. If the time to failure can be

modeled as exponentially distributed then the subgroup can be replaced by an

"equivalent element." Then further decomposition may continue if a parallel

subgroup of "equivalent elements" can be modeled in ths same fashion.

This method can greatly reduce the o-ier of a complex system to be

solved by Markovian analysis and therefore reduce the computer time necessary

relative to matrix powering techniques used to solve the same problem.

However, application is limited, as the method requires that there be

parallel subgroups of like components, and even when such structures exist,

they can only be replaced with "equivalent elements" if analysis of the

subgroup shows it to have exponential repair and failure distributions, which

certainly may not always be the case.

An important characteristic of the Markov model is that at any time the

Dynamic Simulation Model 41

system can be completely described by specifying the state the system is in

and all of the exponential transfer rates in and out of each system state.

Solving the system of equations provides time dependent information about the

probability that the system is in any one of the possible states, however if

it is necessary to know the probability of transition between any two states

at a specified time it is essential to use the Chapman-Kolmogorov equations.

The Chapman-Kolmogorov equations are given by:

N

Pjk(t't') = ii (t,u) Pik (u,t') (2.1)

i= 1

where t' < u < t

These allow direct calculation of transition probabilities provided all

possible intermediate transitions are determined first. In reference L-1

Limnios describes a new method for numerical solution of the Kolmogorov

equations for continuous time Markov chains. The method provides a very

simple numerical treatment which can be applied directly i. discrete time

solutions of Markov systems. The error can be made arbitrarily small through

proper choice of parameters. The procedure requires less operations than

direct development for cases where the norm of the state transition matrix

is large (greater than five). The larger the norm of the transition matrix,

the greater the computational savings. This method will prove useful in

numerical computer codes which solve Markov systems through the use of matrix

exponentiation techniques.

Another variation of the Markov approach is discussed by Aldemir in

references A-1 and A-2. This method describes a dynamic failure model for

evaluation of process control systems. The approach is unique in that most

techniques consider simple binary components which are either fatled or

operational and this method considers continuous state dynamic variables

Dynamic Simulation Model 42

including such parameters as temperature, pressure, and liquid level. The

method, which is described in detail in reference A-l, is based on discrete

state space, discrete time representation of process control system dynamics

and probabilistic system behavior simulated by Markov chains. An algorithm

is developed for construction of the state transition matrix and input

preparation for the algorithm is illustrated by example. The method is

demonstrated to be effective for accurate failure analysis of process control

systems.

Markovian analysis procedures provide a means for determining system

state continuous time (or discrete time) availability information. The

method applies only to components with exponentially distributed repair and

failure rates. Once the state transition equations are derived it is always

possible to solve the system exactly although in many cases exact solution

may require a prohibitive amount of computational effort. The mathematics

involved can become extremely cumbersome as the size of the system increases

since the number of system states expands exponentially with the number of

system components. The method also does not lend itself well to phased

mission analysis although Markov chains can be used as discussed above.

Example Markov solutions are shown in conjunction with the sample simulation

problems considered in Chapters 4 and 5.

2.3.5 Monte Carlo Simulation

Monte Carlo simulation is a system reliability analysis approach which

has great potential for solving complex analysis problems. Descriptions of

the method of Monte Carlo simulation for system reliability analysis can be

found in references B-2 and P-I and many other systems reliability analysis

texts. The basic approach involves generating a computer model which

simulates operation of the system under consideration. Random number

Dynamic Simulation Model 43

generators are used to model the random events in the system such as failure

and repair of components. For each set of random numbers (experiment), the

program is run and the result is a discrete time description of all system

process variables and/or system component states. The experiment is

performed a series of times and the results are averaged over all of the

trials to provide an estimate of the system reliability. For example, if the

availability of a system, A(t), is to be determined, the simulation can be

run for N trials, each simulating system operation over a fixed time period,

T. The value of A(t) for each trial can be stored for selected discrete time

points to provide A(t I trial i). An estimate of A(t) can then be made at

the discrete time points using the equation:

N

A'(t) = [N A (titrial i) (22)
1=1.

where A'(t) is an estimate of A(t)

As N goes to infinity this estimate will approach the exact analytical

result. The variance of the estimate A'(t) is proportional to 1/N, thus to

reduce the standard deviation of the estimate it is necessary to increase the

number of trials performed.

There are advantages and disadvantages to the use of Monte Carlo

simulation. One major advantage is that since a simulation model is

developed to fit the problem, it is possible to quantitatively evaluate any

system regardless of the form of the transfer rate expressions and the

complexity of the system itself. In theory, results can be made as accurate

as desireable by improving the modeling assumptions and running the

experiment for an arbitrarily large number of trials. However, herein also

lies the major disadvantage. To develop extremely accurate models for

complex bystems may involve a relatively large amount of time for formation

* Dynamic Simulation Model 44

of the program and excessive cost in computer time for execution since the

number of trials required to obtain acceptable results may be unreasonable.

And, in general, references G-3 and P-1 agree that the amount of simulation

time required to provide reasonable confidence in the results obtained will

be far larger than the time required to acquire an analytical solution to the

same problem, provided an analytic solution can be achieved. Monte Carlo

simulation methods are being used in many engineering fields and one example

is in the area of electric power generating system reliability. References

A-3 and G-3 both deal with this subject in detail. In reference G-3, Ghajar

and Billinton use Monte Carlo simulation to produce a generating system

outage history over a period of time combined with a load model to determine

adequacy indices. In this model start-up and shut-down of individual

generating units are modeled and start-up failures are modeled distinctly

from running failures. The model is applied to the IEEE Reliability Test

System (RTS) and it demonstrates good agreement with analytical results.

Reference A-3 by Allan, Jebril, Saboury, and Roman, similarly evaluates

power system reliability using Monte Carlo simulation, but with a slightly

different model. Results of this model for the IEEE RTS are compared with

the analytical results and again the mean values of the indices indicate

favorable outcomes. It is noted, however, that the standard deviation or

dispersion of the results is extreme even though mean values are consistent.

This can be of major importance since relevant decisions may be made based

* on dispersion characteristics of certain indices. For this model it may be

necessary to run a much larger number of trials or possibly to employ

variance reduction techniques.

* Reference L-2 by Lewis and Zhuguo describes how Monte Carlo sampling

procedures are used to solve inhomogeneous Markov processes. Inhomogeneous

!

* Dynamic Simulation Model 45

Markov processes refer to systems which can be modeled by a discrete state

space, but the transition rates are time dependent. These problems are

solved with Markovian analysis techniques by using Monte Carlo sampling to

determine the times between state transitions. It is explained that Monte

Carlo methods are capable of treating Markov models which would be

intractable by deterministic computational methods. In the reference, a

model is developed which can treat Markov systems with time dependent

transition rates and which allows for periodic testing and maintenance. The

paper concludes with remarks concerning the development of future Monte Carlo

simulation models for system reliability analysis which incorporate the

concept of cumulative damage.

Kumamoto, Tanaka, and Inoue describe a new Monte Carlo method for

evaluating system failure probabilities in reference K-2. They explain that

for extremely reliable systems the method of direct Monte Carlo simulation

is not applicable since the number of trials required to obtain meaningful

results would be prohibitive. This fact is well known and variance reduction

techniques are applied to yield smaller variances with the same number of

trials as direct Monte Carlo methods. Karp and Luby have previously

developed the Karp-Luby minimum variance estimator (KLM) which is used to

estimate the minimum number of trials necessary to achieve results which are

accurate within certain variance limits. The KLM method can only be applied

to a system if all the minimal cut sets are known. A variance is specified

and then the K1M estimates the number of trials necessary to achieve

satisfactory results with the Karp-Luby Monte Carlo method.

Kumamoto, Tanaka, and Inoue have developed what they call the "New

* Coverage Monte Carlo" (NCM) method and an associated minimum variance

estimator. Their method is very similar in nature to the Karp-Luby method,

Dynamic Simulation Model 46

however they are able to achieve results of equal accuracy with a far fewer

number of trials thus saving considerable computer time. Their method can

only be applied to systems composed of components with very small failure

probabilities and the smaller the component failure probabilities are the

more pronounced the benefit this method provides over the Karp-Luby method.

Monte Carlo simulation methods are seen to be extremely useful in

evaluating system reliability for complex systems which often can not be

solved analytically. This method also allows for straightforward analysis

of phased mission problems. It can be, however, quite time consuming to use

and the results can have large variances associated with them.

2.6 Chapter Summary

The many methods for system reliability analysis can be broadly grouped

into two basic categories. Those methods which provide static system

information and those which can be used to do dynamic analyses. Of the

static methods, fault tree analysis procedures and the GO methodology were

considered. For dynamic analysis methods, event trees, digraphs, Markovian

analysis, the GO-FLOW methodology, and simulation were discussed.

The two static methods provide excellent tools for evaluating average

system unavailability but have only limited applicability to solving dynamic

problems. Separate program runs or computation sets must be done to evaluate

the system at each discrete time point of interest. Also because of their

static nature, they can not be used to solve phased mission problems without

performing numerous intermediate analysis computations.

Of the dynamic methods it was seen that availability information can

be obtained for all manner of complex systems, however each method has its

limitations or drawbacks. Event trees can not be used to treat systems which

contain an indefinite number of failure and repair loops and are only quasi-

0

Dynamic Simulation Model 47

dynamic, as they involve the passage of time in the event tree sequencing of

events. Markovian analysis provides detailed information about time

dependent unavailability, but can only be applied to systems containing

components with exponentially distributed transition times. GO-FLOW allows

for consideration of any manner of transition time distributions, however it

is only designed to treat discrete state devices. If continuously varying

process variables are to be considered a complex discretization scheme must

be developed.

With the possible exception of the GO and GO-FLOW methodologies, all

system reliability analysis techniques discussed require development of a

model where all possible system states are clearly defined. An alternative

to this type of problem analysis is the simulation approach. A Monte Carlo

simulation approach can be developed which requires only an understanding of

the components involved in the system and the relationships between them.

In the next chapter a benchmark model is developed which provides a simple

approach to determining the availability of complex systems.

* Dynamic Simulation Model 48

Chapter 3

DYMCAM Dynamic Simulation Model

3.1 Introduction

In Chapter 2, one of the methods discussed for evaluating the

reliability of complex systems was the Monte Carlo simulation technique.

There are many ways that this technique can be implemented using a computer,

and the way the computer program functions, along with the usefulness of the

simulation results, can be dependent on the simulation language which is

used. In this chapter simulation languages are discussed in general and

their benefits and weaknesses with regard to Monte Carlo simulation

programming are examined. The SIMSCRIPT 11.5 simulation language is used

for the dynamic simulation model developed in this work. It is described in

the second section of this chapter along with an explanation of why this

language is believed to be useful for a Monte Carlo simulation model of the

type developed in this work. The SIMSCRIPT language is a powerful simulation

tool and has not been used to its fullest extent in this work. The program

developed here is a basic model designed to demonstrate fundamental features

of a simulation approach to availability analysis, and limitations of this

program should not be viewed as limitations of the SIMSCRIPT language or

simulation in general.

Following the discussion of simulation languages, the subsequent

sections of this chapter describe in detail the design objectives that were

used in developing the DYMCAM (DYnamic Monte Carlo Availability Model)

program proposed. Certain assumptions were made to keep the initial DYMCAM

program at a manageable size for this introductory work, and these

* assumptions are detailed explicitly in Section 3.3. The fourth section gives

a detailed description of the DYMCAM program. This program has been written

Dynamic Simulation Model 49

in a very general form and throughout this work it is pointed out where

simple modifications can be made to the program to make it more powerful or

to meet specific needs. Many such modification proposals are included in the

program description section of this chapter. For a detailed description of

the input file format necessary to run the program, Appendix A should be

consulted. The chapter concludes with a summary section.

3.2 Simulation Languages

3.2.1 AIn Overview

To fully appreciate the method of Monte Carlo simulation for systems

reliability analysis, it is necessary to understand simulation as a tool, and

what its advantages and disadvantages are. Reference B-4 by Banks and Carson

is an excellent text for studying simulation techniques. In addition, in

reference B-5, also by Banks and Carson, there is a good description of

several process-interaction simulation languages. Different simulation

languages are designed to be used for certain types of problems and it is

necessary to know which languages are best used for Monte Carlo problems.

This section takes a general look at simulation approaches.

It should be pointed out that in the area of system reliability

analysis, simulation can be an important tool since there are numerous

examples of large complex problems which cannot be solved by analytical

techniques. Monte Carlo procedures are very useful for many such instances.

Further, even in cases where analytical solutions are available it may be

desireable to use simulation methods. The advantages and disadvantages must

be understood, however. Presently, the methods of simulation are not widely

used in reliability analysis. Reference S-1 by Schmidt and Taylor specifies

some primary advantages and disadvantages of simulation and these are listed

in Table 3.1.

Dynamic Simulation Model 50

Table 3.1

Advantages and Disadvantages of Simulation

Advantages:
- Once a model is built, it can be used repeatedly to analyze
proposed designs or policies.

- Simulation models are usually easier to apply than analytic
methods. Thus there are many more potential users of
simulation models than of analytic methods.

- Whereas analytic models usually require many simplifying
assumptions to make them mathematically tractable, simulation
models have no such restrictions. With analytic models, the
analyst usually can complete only a limited number of system
performance measures. With simulation models, the data
generated can be used to estimate any conceivable performance
measure.

- In some instances, simulation is the only means of deriving a
solution to a problem.

Disadvantages:
- Simulation models for digital computers may be costly,
requiring large expenditures of time in their construction and
validation.

- Numerous runs of a simulation model are usually required and
this can result in high computer costs.

- Simulation is sometimes used when analytic techniques will
suffice. This situation occurs as users become familiar with
simulation methodology and forget about their mathematical
training.

5

There are several basic features which are desireable for a dynamic

availability analysis model. These are:

1. The model must contain general component models.

2. Component history must be traceable to provide dynamic system

information.

3. Systems should be constructable by linking general component

mod-ls.

4. Interactions between components must be modelled.

5. Scheduling of system changes at specified times must be possible.

Taken from reference B-4 page 4, the original information comes from
reference S-1.

Dynamic Simulation Model 51

6. For systems containing continuous process variables, a continuous

simulation capability is necessary.

Of these six basic characteristics, the first one is easily obtainable

by any programming language. To create general component models it is

necessary to define input and output parameters to the component, and a rule,

or set of rules, which provide a means of determining the component output

and state based on input information. Figure 3.1 shows a general component

model. It can be thought of as a box into which signals are fed and an

output emerges. In addition to signals, information concerning failure and

repair rates must be entered. To provide dynamic system information the

signals must be able to change value as a function of time. All of these

features are easily programmable in any computer language such as FORTRAN or

PASCAL.

The second necessary feature is the ability to track component history.

Figure 3.2 shows a time line of performance for a specific component. The

component is operational for a random length of time and then experiences a

failure. There is a random repair delay modeled indicating passage of time

before the failure is detected, and then once the failure is found, repair

is begun. The component repair time is also random and once the component

is repaired it is returned to its operational state. Note that, in general,

the component need not be returned to its original state. To track the

availability of systems composed of such components it is necessary to have

features of the program language which allow for integration over time to

determine the average system unavailability, and which allow for sampling the

system or component status at selected instants in time to determine the

* dynamic system unavailability at discrete time points.

To allow the treatment of process variables (which are the fundamental

Dynamic Simulation Model 52

0

Power Signal In

Control Signal In

General

Process Variable In #1 CmoetProcess Variable Out #1• Component

Model

Process Variable In #N Process Variable Out #N

Figure 3.1 General Component Model

Dynamic Simulation Model 53

Random
Time to
Failure

GOOD

BAD TIME

Random Random
Repair Repair
Delay Time

Figure 3.2 Component History

* DynamLc Simulation Model 54

quantities determining system "success" or "failure"), it is necessary to be

able to link all of the component models and allow them to interact with each

other through the process variables. This requirement means that the output

signal from one element will be used as the input signal to another

component. This will cause the second component to react to whatever change

may have occ'irred in the first component. In this manner, the failure (or

change of state) of one system component can be propagated through the

system. By linking the components in this fashion it is possible to create

an entire system model out of the general component models. By requiring the

components to change state based on their inputs the interaction between

components will be modelled. Since in some systems it may be possible to

produce loops of elements, it becomes necessary to continue propagating

changes through the system in a cyclic fashion until no further changes

occur.

To simulate a dynamic system it is necessary to simulate the passage

of time. This can be done by two different methods. The first is by

discrete event simulation. In this method a queue is created into which

events are entered along with their scheduled occurrence times. For example,

a command signal causing a valve to close can be scheduled to occur at a

• specified time, or a pump could be scheduled to be placed in a standby

condition to simulate the performance of maintenance. At a separate time,

the valve may be given the command to open or the pump could be placed back

* in an operational state. Numerous such events can be scheduled and entered

in the queue; events in the queue are ordered by their occurrence times. In

discrete event simulation, the simulation clock is started and time is

* advanced to the time corresponding to the first event in the queue. This

event is executed and the changes propagated through the system. Once the

* Dynamic Simulation Model 55

system has reached a steady state indicating that all consequences of the

initial change have been realized, the clock is advanced to the time of the

next event in the queue. Operation continues in this manner until there are

no more entries in the event queue. This type of event simulation assumes

that no changes occur in the system between the scheduled discrete events.

This will not be the case for systems involving continuous variables and

another simulation approach is necessary for such systems.

In continuous event simulation certain system parameters are

continuously variable. This is true for process control problems, or any

analyses which involve temperature, pressure, flow rates, or fluid levels as

process variables. To simulate this type of system, time is advanced by a

small time step and all system parameters are updated. If a component has

changed state during the time step, this change is propagated through the

* system in the same manner as for discrete event simulation. After all

changes have been made, the simulation clock is again advanced by the time

step and all changes are calculated. Simulation is continued in this fashion

until time has been advanced to the end of the desired simulation period.

From the above discussion it is seen that there are three perspectives

from which simulation languages can be constructed and these are discussed

* in reference B-5. These include process-interaction, event-scheduling, and

continuous simulation. Process interaction provides modelling of system

components as processes (groups of related events such as component failure

* and component repair) and then relates these processes to each other in a

manner which allows the components to interact. Event scheduling allows for

events to be scheduled in a queue for occurrence at a specified time during

* a simulation as is used for a purely discrete event simulation approach.

Continuous simulation is used when variables of a continuous nature are to

Dynamic Simulation Model 56

be considered, in which case discrete event simulation is not appropriate.

Any simulation language may use one or a combination of all of these

approaches. The most powerful language to use from a systems reliability

analysis standpoint would clearly be a language that employs all three

positions, since a process interaction capability is desireable to easily

model component interactions, event scheduling is desireable to cause the

occurrence of such discrete events as system maintenance and testing, and

continuous simulation is necessary to treat systems containing continuous

variables.

Any of the three approaches discussed above can be programed in general

programming languages such as FORTRAN or Pascal. However, in recent years

many program languages have been developed specifically for simulation

applications. Some of these languages are based on languages like FORTRAN

while others have been developed specifically for simulation problems. One

example of discrete event simulation using a standard program language can

be found in SIMTOOLS. This product, described in reference S-2, is a

collection of data structures and routines which allow the writing of

discrete event simulation programs in Pascal using the event view. This

method may be simpler for individuals already familiar with the Pascal

language, however it may not be as efficient as simulation with the languages

which have been designed specifically to treat simulation problems.

Many products are currently available for discrete event simulation.

Several of these products are compared and discussed on reference B-4. Their

approaches and modeling characteristics are summarized in Table 3.2 which

gives a comparison of five languages including FORTRAN to illustrate which

programs could be used to perform different simulation functions. It can be

seen that as far as modeling approach is concerned, SIMSCRIPT 11.5 is

Dynamic Simulation Model 57

extremely versatile and could be used to model all types of random variables

and event occurrences in a Monte Carlo simulation model. SLAM II is a

simulation language which also allows for programming of all modeling

approaches and could prove to be an equal alternative to the SIMSCRIPT 11.5

language for coding of the program developed for this work. The other

example languages shown do not have the adaptability to perform all the tasks

modeled in the DYMCAM program and the modified DYMCAM program (TANK)

described in Chapter 5.

It should be noted that although Table 3.2 includes FORTRAN for

comparative purposes, it is certainly possible for anyone so inclined to

create there own simulation language equal to, or better than, those

mentioned here based on FORTRAN or Pascal. It is possible to write a FORTRAN

program oriented to solving any type of system and using any one, or all

three, of the modeling approaches, and although random sampling is not built

in, there are several scientific subroutines available for random number

generation in FORTRAN. In the following section the basic features of the

SIMSCRIPT 11.5 simulation language will be discussed to describe the features

available for the DYMCAM dynamic simulation model.

0 Dynamic Simulation Model 58

Table 3.2
Comparison of Languages for Discrete-Event Simulation

6

Language
Criteria FORTRAN GASP IV SIMSCRIPT GPSS/H SLAM II

11.5
Ease of learning Good Good Good Excellent Excellent

Ease of conceptualiz- Poor Fair Good Excellent Excellent
ing a problem

Systems oriented None All All Queueing All
toward

Modeling approach

Event-scheduling No7 Yes Yes No Yes

Process-interaction No7 No Yes Yes Yes

Continuous No7 Yes Yes No Yes

Support
Random sampling No Yes Yes Yes Yes
built in

Statistics gathering Poor Excellent Excellent Good Excellent

capability

List-processing Poor Good Excellent Good Good
capability

Ease of getting Poor Excellent Fair Excellent Excellent
standard report

Ease of designing Fair Good Excellent Good Good
special report

Debugging aids Fair Good Excellent Good Good

• Computer runtime Excellent Good Good Good Good

Documentation for Very Good Very Good Fair Very Good Very Good
learning language
and for reference

* Self-documenting code Poor Good Good Excellent Good

Cost Low Low High High Medium

6 This table is Table 3.8 taken from Reference B-4.

7 Modelling structures not built-in, but can be developed.

Dynamic Simulation Model 59

3.2.2 SINSCRIPT 11.5

There are many references available for explaining the SIMSCRIPT 11.5

language and programming techniques for developing simulation models. The

text by Law and Larmey (ref. L-4) is a beginning handbook for understanding

the language. For a more detailed description on programming procedures,

reference R-l by Russell should be consulted. This latter book explains more

of the complicated modeling methods than the introductory text. Other

references used in development of the DYMCAM model include, reference C-1,

reference C-2, and reference F-i. All three of these texts provide useful

information for understanding the use of SIMSCRIPT commands and modeling

techniques.

SIMSCRIPT 11.5 is a general programming language which facilitates the

development of a discrete-event simulation model. It allows for both process

interaction and event-scheduling points of view, or a combination of the two,

in simulation modeling. A language extension in current versions allows for

continuous simulations. In addition, it also has powerful scientific

computing and list processing capabilities which when used to there fullest

degree can be more efficient, for a programmer, than FORTRAN. A unique

feature of the SIMSCRIPT program is that it can be written in English-like

statements. As a simulation language in comparison to FORTRAN, SIMSCRIPT

performs many complicated automatic maintenance tasks and report generation

functions. It is very well suited for all types of Monte Carlo simulation

problems.

Before proceeding, several SIMSCRIPT terms need defining to provide a

basic understanding of simulation programming using SIMSCRIPT. For more

complete descriptions the references noted previously should consulted. The

basic terms to be described here include: SCHEDULING, ENTITY, PROCESS,

* Dynamic Simulation Model 60

ATTRIBUTE, and SETS.

SCHEDULING refers to the discrete event feature of SIMSCRIPT. An event

queue is created and events are placed in the queue (scheduled) along with

their time of occurrence. The events i.n the queue are arranged in the order

of their occurrence time and executed in that order. Time then is advanced

to the occurrence time of the next event in the queue. The queue is dynamic;

as simulated time progresses, new events may be scheduled and other

(previously scheduled) events removed from the queue. For example, a

component failure can be scheduled to occur at a certain time. Once the

failure has occurred, an event representing repair completion can then be

scheduled. As an example of removing events from the queue, an event can be

scheduled at the beginning of a simulation which restores all components to

as-good-as-new condition at a specified time. This event can remove all

scheduled component failures from the queue. Later in the simulation, the

failures can be rescheduled to occur at later times.

An ENTITY is a program variable and has a memory location allocated to

it once it is created. Entities are of two types, per-anent and temporary.

Permanent entities are created once, at the beginning of the program, and

exist throughout program execution. Temporary entities are created only when

needed and memory can be made available again for other variables by

destroying the temporary entity once it is no longer needed. This provides

a means of keeping data structures contained in computer memory to a minimum,

thus providing for more efficient program operation. Several identical

entities can be created by using a pointer or indexing variable. For

example, if a simulation is to contain 10 valves, the following lines of code

* could be used to create them:

Dynamic Simulation Model 61

reserve pointer(*) as 10
for i equals 1 to 10
do

create a valve called pointer(i)
loop

Then to refer to a specific valve the pointer can be used.

A PROCESS is a special SIMSCRIPT entity which has memory associated

with it in the same manner as a temporary entity. It can have several

identical instances created. For example, if a component is modeled as a

process, several identical processes can be created, one associated with each

component. The most important feature of a process is that it has a

subroutine associated with it which can schedule events and interrupt other

processes. A process subroutine can also contain statements which cause the

execution of the routine to be suspended, and an event notice to be placed

in the event queue to cause the process routine to continue execution at a

later scheduled time. If a component is modeled as a process, then the

failure of the component can be scheduled by the process and process

execution suspended until this time has been reached. Once the failure time

has been reached, the component process again begins execution in the line

of code following the failure scheduling. Here a repair delay can be defined

and execution suspended until the scheduled delay time has passed. Then

repair can be scheduled in the same manner. A process can also create other

processes or temporary entities.

All entities and processes can have ATTRIBUTES associated with them.

This is a way of creating a data array. For instance, a pump can be defined

as an entity. Several pumps may be created. Associated with each pump there

may be a demand failure probability, a failure rate, a repair rate, etc.

These characteristics can be defined as attributes of the pump entity and

thus when a pump is created, memory storage is a'so allocated for the array

* Dynamic Simulation Model 62

of characteristics associated with it. Processes can also have attributes

in the same manner.

SETS are an important SIMSCRIPT feature. Several items which are of

the same type can be grouped as members of a set. These members may be

entities or processes, but must be one or the other, in a given set. For

example consider a system containing 100 different input and output signals

from ten system components. Several of the signals may be input signals to

a given component. A signal set can be defined to group these signals. The

set will be "owned" by the component process, and the input signals will

"belong" to the set. Thus in SIMSCRIPT terminology, all sets must have an

owner and may have any number of members which belong to the set.

SIMSCRIPT also has useful statistics features available for evaluating

system simulation. The two basic commands are TALLY and ACCUMULATE. The

Tally command is used to compute statistics of a distribution, such as the

mean and variance, at specified instants of time. The distribution can be

an array variable. The Accumulate command tracks the behavior of en entity

over the duration of a simulation. It performs integration with respect to

ti=e and can be used to determine c time-averaged behavior of a system

entity. By properly defining the possible component states, this feature can

be used directly to calculate time averaged system unavailability

information.

The process-interaction approach to simulation modeling allows

SIMSCRIPT to be very useful in the analysis of complicated phased mission

problems. Components can be modeled as processes thus allowing each

component to control its own time dependent behavior. Failure and repair

procedures can be included in the component process subroutine to provide

scheduling of failure and repair times. By modeling testing and maintenance

Dynamic Simulation Model 63

as separate processes it is possible to correctly model random testing and

maintenance events interrupting component operation and then restarting the

components once they are completed. If it is desireable to limit repair

resources, such as by limiting the number of components under repair at any

given time, or if random repair delays are to be incorporated based on the

number of components presently failed, it is possible to create a "repair

supervisor process." This process could be used to schedule repair processes

by interrupting and rescheduling selected component events. Event scheduling

techniques do not readily allow this flexibility, since scheduling of certain

events, such as repair completion times and testing termination intervals,

are dependent on the occurrence of other random events and are therefore best

modeled by processes rather than sequences of events.

As an example, consider the time line of Figure 3.3A. A system is

composed of two components with exponential failure distributions and

constant repair time. Using discrete event scheduling, the failure and

repair times can be scheduled for both components before the start of the

simulation based on their failure rate and repair time data as shown in

Figure 3.3A. The occurrence times are independent and do not interact with

each other. However, if repair resources are to be limited such that only

one component can be under repair at a time, then the event scheduling shown

in figure 3.3A is not adequate. A repair supervisor process can be used

which counts failures of components and schedules repair events. Then when

the first component fails, the repair process will immediately schedule the

repair time. When the second component fails, if the first component is

still under repair, then the process can wait until repair of the first

component is complete before repair is begun on the second component. This

is illustrated in Figure 3.3B. This type of component interaction requires

Dynamic Simulation Model 64

Component #1

- - Component #2

Repair Time

I IGOOD

BAD L TIME

Repair Time

a.) Component Repair Modeling, Two Repairmen

Repair Time

GOOD ------

BAD " --- - TIME

Repair Time

b.) Component Repair Modeling, One Repairman

Figure 3.3 Limited Repair Resource Modeling

Dynamic Simulation Model 65

some form of process interaction simulation approach to model adequately.

The continuous capability is important for analysis of problems which

have continuous random variables. It allows for straightforward analysis of

process controls systems and like structures which include such continuous

parameters as temperature, pressure, flow rates, or fluid levels. This

program capability is taken advantage of in Chapter 5. The report generating

functions are also extremely useful as they allow easy calculation of such

system parameters as all statistical values and all time averaged quantities

of interest. The SIMSCRIPT 11.5 simulation language provides many other

valuable programing features useful for developing Monte Carlo simulation

models and several of these shall be evident in later sections of this work.

For more complete information the references should be consulted.

3.3 Program Objectives

The DYMCAM (Dynamic Monte Carlo Availability Model) base simulation

program was developed with the three primary objectives. These objectives

are: 1) provide a model which is able to analyze the time-dependent

unavailability of dynamic systems, 2) provide a model which is easy to

construct and interpret, and 3) provide a base model which can easily be

expanded to incorporate additional features as needed.

To analyze the time-dependent unavailability of a system it is

necessary to consider two basic program abilities. The program must

incorporate component repair and there must be a program feature which allows

the scheduling of external events. Consider the time line of Figure 3.4.

During the course of a simulation, two types of events must scheduled to

cause changes in components of the system. These are internal events and

external events. Internal events are failure and repair times of individual

components. Scheduling of these events is controlled by the individual

Dynamic Simulation Model 66

Start Simulation t - 0 Valve Open

External Event t - 8 Valve Ordered Closed

Internal Event t - 10 Valve Fails Open

Internal Event t - 22 Valve Repaired
(and closed)

External Event t - 34 Valve Ordered Opened

Figure 3.4 Event Scheduling Approaches

Dynamic Simulation Model 67

component processes. External events are scheduled at the start of a

simulation by the user. In the example shown these types of events could

include such occurrences as changing the state of a valve from closed to

open. The time-dependent availability of a system will depend on both types

of events.

Another time-dependent feature desired, is the incorporation of

interactions between components based on process variables. When one

component in a system changes state, it may have an impact on other

components in the system. Thus the change must be propagated through the

system to determine what effect there is on other components. For example,

an open valve may be supplying water to an operating pump. If the valve

fails closed, flow to the pump is stopped. If the pump does not stop on its

own, it will fail. Even in the absence of directly caused failures such as

this, it is necessary to propagate interactions to obtain the state of all

process variables.

To provide a model which is easy to use and interpret, it is necessary

to provide component models in the program which correspond directly with

physical components. Th's is a feature provided by both GO and GO-FLOW as

was discussed in Chapter 2. It is also the approach adopted by Apostolakis,

Salem, and Wu when constructing fault trees based on decision tables (ref.

A-4). The problem with GO was that it is designed to be used in static

analysis cases. In the case of GO-FLOW, which is designed for time-dependent

analysis, the method does not incorporate repair directly into its operators

and can therefore not directly treat the failure and repair cycles of

components. The equations of the GO-FLOW operators in Table 2.1 demonstrates

this fact.

The model to be developed should have a one-to-one correspondence

Dynamic Simulation Model 68

between physical components and model components and connections between

compondnts in the model should reflect actual component interactions in the

physical system. Power and control signals to components must be modeled as

well as process variables. The set of rules governing the possible changes

in component state as a function of the various input signals supplied to

them should clearly reflect the physical changes actually experienced.

Since the model to be developed is to be a basic one, it should also

be easy to modify so that additional feature may be incorporated. Such

features may include non-exponential transitions, dependent repair and

failure of components, uncertainty analysis, continuous process variables,

and complex interactions. Specific features of the actual model will be

discussed in section 3.5.

3.4 Model Assumptions

To implement the general model to treat the behavior of some simple,

but realistic systems, a number of assumptions are made as detailed in this

section. Many of these assumptions can be relaxed at a future date if more

work is to be done on the DYMCAM dynamic simulation model. They do not

represent restrictions of the simulation language or the program, but merely

modeling simplifications. Where applicable comments will be made concerning

relaxing the assumptions.

The base model considers exponentially distributed failure and Weibull

distributed repair times. Dependent failure and repair are considered only

to the extent that the loss of the process variable to an active component

causes it to fail if it is in an operating state, and external events can be

used to model shocks which fail several components simultaneously.

Uncertainty analysis is not included. Continuous variables are included in

the program modification described in Chapter 5. Complex interactions are

Dynamic Simulation Model 69

also considered, to a certain extent in Chapter 5, as operational states of

components are dependent on the level of the continuous process variable.

The output generated by the program is also of importance. The desired

output of the DYMCAM program is a print out of the time dependent system

unavailability and the average system unavailability over the duration of

simulated time. The time-dependent unavailability can be printed in several

fashions. If desireable, the user can specify an arbitrary set of time

points between time zero (start of simulation) and the terminal time (end of

simulation) and enter these time values directly in the input file. Or, if

it is preferred, the number of time points desired can be specified in the

input file and the program will automatically select the specified number of

points, uniformly distributed over a linear or logarithmic scale between the

starting time and the end time.

For computing the average system unavailability over the duration of

the simulation, the program uses the basic SIMSCRIPT 11.5 Accumulate

commands. Over each simulated system run the total time the system was

unavailable is determined and then divided by the total time. This value is

stored for each run and statistics are taken to determine the average and

standard deviation of the average unavailability over the number of system

runs. The average and standard deviation are then printed in the output file

along with selected percentiles of the distribution. If desireable, a simple

program modification allows for printing of the average system unavailability

for every trial. This is done in one of the example problems discussed in

Chapter 4.

To model system components, five component types were chosen. These

* include valves, check valves, switches, and generic active and passive

components. Component types are defined by the number and type of input

Dynamic Simulation Model 70

signals, by the possible internal states of the component, and by the rules

used to process the input/output signals as a function of the component

state.

A large number of engineering components can be modeled effectively

using these basic elements. Active components, valves, and switches have a

minimum of three inputs which include a power signal, a command signal, and

at least one process input. Passive components have a minimum of one input.

They require at least one process input and do not require power or commands.

All components can have any number of process outputs. Figures 3.5 to 3.9

provide diagrams and rule tables describing the five component types. The

rule tables are taken directly from the model program listing of Appendix B.

Generally, at the start of a run, no component is initially in a failed

state. Note that it is a simple matter to use an external event to change

a component to a failed state at time zero.

Changes can be forced on the system at any time through the use of

external events. These external events can be scheduled to occur during the

simulated system operating period and can be used to change the state of

components or to change system signals, such as changing a command signal to

tell a pump to turn on or off. The current model requires the times of such

occurrences to be known before the start of the simulation and included in

the input file. The programming language, however, will allow for the random

scheduling of these external events. If this is desireable at a later date,

it simply involves creating a process routine (similar to the repair

supervisor routine) which schedules events in a random fashion. This type

of routine may be useful for treating unscheduled testing and maintenance.

* Dynamic Simulation Model 71

* Input Command

Input Power ACTIVE Output Process

Input Process

0 Decision Table

Command Power Process Initial Final ProcessCase Input Input Input State State Output
--------------------------- -------- --------- -------------- ------

1 - - failed failed no
2 no - standby standby no
3 stop yes - standby standby no
4 none yes - standby standby no
5 start yes no standby standby* no

* failed no
6 start yes yes standby standby* no

operating yes
7 no - operating standby no
8 stop yes no operating failed no

standby no
9 stop yes yes operating operating* yes

standby no10 none yes no operating failed no
11 none yes yes operating operating yes
12 start yes no operating failed no
13 start yes yes operating operating yes
14 -- - standby* standby* no
15 - no - operating* operating* no
16 - yes no operating* failed no

* 17 - yes yes operating* operating* yes

Figure 3.5 Active Component

Dynamic Simulation Model 72

Input Process PASSIVE Output Process

Decision Table

Process Initial Final Process

Case Input State State Output

1 - failed failed no

2 no standby standby no

3 yes standby failed no
operating yes

4 no operating standby no

5 yes operating operating yes

Figure 3.6 Passive Component

Dynamic Simulation Model 73

Input Command

Input Power VALVE -Output Process

Input Process

Decision Table

Command Power Process Initial Final Process
Case Input Input Input State State Output

1 - - - failed_open failed open no
2 - no - open open no
3 open - - open open no
4 none - - open open no
5 close yes no open failed open no

closed no
6 close yes yes open failed-open no

closed yes
7 - - no failedclosed failedclosed no
8 - - yes failed closed failed closed yes
9 - no no closed closed no

10 - no yes closed closed yes
11 open yes no closed failedclosed no

open no
12 open yes yes closed failedclosed yes

open no
13 none - no closed closed no
14 none - yes closed closed yes
15 close - no closed closed no
16 close - yes closed closed yes

Figure 3.7 Valve

Dynamic Simulation Model 74

Input Process CHECK VALVE- - Output Process

Decision Table

Process Initial Final ProcessCase Input State State Output

1 - failed closed failed closed no
2 no closed closed no
3 yes closed failed-closed no

open yes
4 no failedopen failed open no
5 yes failedopen failed-open yes
6 no open failed open no

closed no
7 yes open open yes

Figure 3.8 Check Valve

Dynamic Simulation Model 75

Input Command

Input Power SWITCH Output Process

Input Process

Decision Table

Command Power Process Initial Final Process
Case Input Input Input State State Output

1 - - - failed closed failed closed no
2 - no - closed closed no
3 close - - closed closed no
4 none - - closed closed no
5 open yes no closed failedclosed no

open no
6 open yes yes closed failedclosed no

open yes
7 - - no failed open failedopen no
8 - - yes failedopen failedopen yes
9 - no no open open no

10 - no yes open open yes
11 close yes no open failedopen no

closed no
12 close yes yes open failedopen yes

closed no
13 none - no open open no
14 none - yes open open yes
15 open - no open open no
16 open - yes open open yes

Figure 3.9 Switch

* Dynamic Simulation Model 76

Component failure times are considered to be exponentially distributed.

Component repair rates are assumed to be Weibull distributed. The SIMSCRIPT

11.5 language allows for many types of distributions, therefore it is an easy

matter to change distribution types if others are more appropriate for

certain applications. These changes can accommodate such time-dependent

effects as component aging.

Also concerning component transfer rates, the possibility of demand

failures of active components, valves, and switches are considered. These

data are entered in the input file8 and applied to cases of the indicated

component failing to transfer in either direction. For instance, a valve can

fail to open when it receives a signal to open or it can fail to close once

it receives a signal to close. This may be a problem if the two failure mode

probabilities are of different magnitude, but this can be easily rectified

* by making minor changes to the program and the input file.

Currently there is no capability to consider repair delays but as is

discussed in an example of Chapter 4 these are easily including in the

• REPAIR.SUPERVISOR routine. If it is necessary to always consider repair

delays for components, then it may be desireable to modify the component

routine of the program to include a repair delay and to change the input file

* so that a repair delay time, or the parameters for a repair delay

distribution can be entered.

Concerning process signals in the program which will represent such

* system characteristics as fluid flow, pressure, temperature, or electric

current, there is currently no provision in the model to determine signal

magnitudes. It is assumed that the existence or non-existence of the qignal

8 The DYMCAM program input file is described in Appendix A.

Dynamic Simulation Model 77

is enough to establish the state of components or of the system. In fact all

components can have any number of process inputs and process outputs and

where inputs are concerned, if the component has at least one input signal

indicating it is on, then if the state of the component is correct, all

output process signals will be "on". For the case of a two-out-of-three

system (an example is considered in Chapter 4) it is possible to modify the

program by changing the input requirements to a valve so that it does not

produce output unless it has at least two input signals. This, however, is

not a satisfactory solution, in general, if process signal strength is

important in the system analysis. Again it would require modifications to

all component routines and the input file to accommodate the notion of signal

strength, but this could be accommodated by the SIMSCRIPT language and this

is a minor point. Currently, there is no limit to the number of input or

output process signals from any given component, so clearly, if signal

strength is to be considered, an algorithm must also be included which

divides the input signal strength between the available outputs based on the

physics of the system.

There are many basic assumptions in the DYMCAM dynamic simulation

model, but most of them can be relaxed if time and effort is taken to modify

the DYMCAM program. The SIMSCRIPT language provides numerous capabilities

and can accommodate almost any feature that may be desireable in a Monte

Carlo simulation model. It is readily apparent that Monte Carlo dynamic

simulation modeling can be a powerful tool for reliability analysis. In the

next section the DYMCAM program will be discussed in detail.

3.5 Program Description

In SIMSCRIPT 11.5 there are many language features which may not be

familiar to those who are accustomed to other program languages. First of

Dynamic Simulation Model 78

all, every program is composed of many subroutines. Two subroutines which

are common to all programs are the "PREAMBLE" and the "MAIN" subroutines.

The PREAMBLE is essentially where all initialization is made for the

execution of the program. The MAIN routine is where overall program

execution is controlled from. For simple programs, this may be the only

routine used other than the PREAMBLE. It is used to call the subroutines and

to start and stop the simulation program.

The DYMCAM program contains many subroutines, including the PREAMBLE

and MAIN routines. Table 3.3 gives a list of all these routines and their

basic purposes. A complete listing of the DYMCAM computer program is

contained in Appendix B. The remainder of this section gives a brief

description of the purpose for, and operation of, each DYMCAM program

subroutine in the context of the program operational flow chart as shown in

Figure 3.10.

Several subroutines are executed before the beginning of actual system

simulation. The first of these is the Input subroutine. The INPUT routine

is used to read the data from the input file and record the information in

the appropriate memory locations. In particular, it defines the

characteristics of the components to be modeled. This routine is called once

during the execution of the program from the MAIN routine. The next routine

called from MAIN is RUN.INITIALIZE. This routine uses the input information

just read in to link the system components together by filing signals in

appropriate input and output sets of various components. It also records

appropriate signals and components in files associated with each external

event for reference when the external event is executed. This routine also

initializes all entities. Variables which are not assigned values are

automatically set equal to zero by SIMSCRIPT.

Dynamic Simulation Model 79

The routine TRIAL. INITIALIZE is called from the MAIN program inside the

loop which is executed once for each Monte Carlo trial which is to be run.

Its purpose is to reset the state of all components and signals to the

initial value they should have at the beginning of execution of the next

simulation trial.

Table 3.3

DYMCAN Subroutines

Subroutine Description

PREAMBLE Defines all Entities and Processes
MAIN Controls overall execution
ACTIVE Controls Active components
AVAILABILITY Process that takes time-dependent

data for unavailability
CALL.UPDATE Process that causes delay then

calls Update routine
CHECK.VALVE Controls Check Valves
COMPONEN'T Process to control failure and

repair of Components
DEMAND.TEST Determines failure on demand

* EXTERNAL.EVENT Process to execute External Events
FAILURE.TRANSLATION Function to determine failed state
INPUT Reads input file
PASSIVE Controls Passive components
REPAIR.SUPERVISOR Process to allocate Repair

resources
RUN.INITIALIZE Initializes Variables for Run
RUN.OUTPUT Prints output results to a file
SCHEDULE.AVAIL.SAMPLES Process to cause recording of time

dependent unavailability data
SCHEDULE.EXTERNAL.EVENTS Process to schedule External Events
STOP.SCENARIO Stops execution of all processes
SWITCH Controls Switches
SYSTEM.UPDATE Propagates Component changes

through the system
TRIAL.INITIALIZE Initializes Variables for a Trial
VALVE Controls Valves

The next two routines called from inside the loop of the MAIN routine

are the scheduling modules. The SCHEDULE.AVAIL.SAMPLES process is used to

schedule interrupts in the execution of a simulation run to sample the system

unavailability. The sample times specified by the user are entered in the

0

Dynamic Simulation Model 80

q nitilze
RNO

Trial Print Output I

Schedule Events In Event Queue
(External Events, Component Failures,

and Availability Samples)I
Initialize Trial

SStart Simuain

Make Component or Signal
Changes as Required by

External Event or

Component State Change
Throum Syste

NO

Figure 3.10 DYpCAM Program Flow Chart

* Dynamic Simulation Model 81

event queue for subsequent simulation interruption for system sampling. The

actual recording of the availability information is done by the AVAILABILITY

process. There is an AVAILABILITY process for each time point specified by

the input file and each one collects data for its assigned time point.

These samples are totaled for each particular sampling time and divided by

the total number of trials in the output routine to determine the system

time-dependent unavailability. The SCHEDULE.AVAIL.SAMPLES routine is only

to schedule the interruptions for sampling by placing event notices in the

event queue.

The SCHEDULE.EXTERNAL.EVENTS process is used to schedule the interrupts

in the execution of the simulation run for the processing of external events.

It schedules these interrupts to occur at the specified times indicated by

the input file. For every external event there is an EXTERNAL.EVENT process.

Each EXTERNAL.EVENT process has a component set and a signal set associated

with it which specify which compontnts and signals are to change. These

changes are performed when the external event is executed and then control

is passed to the SYSTEM.UPDATE routine. EXTERNAL.EVENT processes are created

by the RUN.INITIALIZE routine along with their associated component and

signal files.

Also inside the loop in Main is the STOP.SCENARIO routine. It is used

to stop the execution of all processes which have not concluded at the end

of a trial and to reset the execution of each component to its original

operating condition.

The CALL.UPDATE process exists inside the loop of the main routine to

escape a complication associated with the simulation language. Any series

* of commands executed sequentially without undergoing the simulated passage

of time must not contain commands which start and stop the same process or

Dynamic Simulation Model 82

:reate and destroy the same entity. It is also not possible to activate the

same process twice. The program is iesigned so that on the initial trial of

a run, all component processes are activated at time zero by the

RUN.INITIALIZE routine. Thus a notice is put in the scheduled events list

which will be executed once the timing routine is begun. One of the first

statements in the COMPONENT process is a command to suspend operation, since

some components, e.g. standby components, may not be operating at the start

of the simulation. Standby components are not allowed to undergo failure in

this model and therefore should not have failure times placed in the event

queue until they are placed in an operational mode. The components that

should be operating are then restarted by the SYSTEM.UPDATE routine.

The problem is that the SYSTEM.UPDATE routine should be executed from

the loop of the MAIN routine before the passage of simulated time is begun.

This would cause an error since the sequential execution of commands would

make it appear that a COMPONENT process has been scheduled to start twice.

Therefore the CALL.UPDATE routine is included in the MAIN program loop. Its

sole purpose is to wait a short period of time so that the simulation clock

is started and all components are in the suspended state before the

SYSTEM.UPDATE routine i4 executed and the operation of selected components

is started again.

The SYSTEM.UPDATE routine will be called many time during the execution

of a simulation program run and it performs many functions. The first time

it is called, it is used only to activate the components which should be

operational at the beginning of a simulation. These components will advance

from their original suspended states and begin their failure and repair

cycles. Thus at the beginning of the simulation each operating component,

if it has a non-zero failure rate, it will have a failure time scheduled for

Dynamic Simulation Model 83

it in the event queue.

At this point the simulation is started. Currently there are three

types of events scheduled in the event queue. These are component failures,

availability samples, and external events. The simulation clock will be

advanced to the time corresponding to the first event in the queue, the

notice scheduling the event will be removed from the overall schedule, and

the event will be processed.

If the event is an external event then an EXTERNAL.EVENT process will

be executed. Components in the external event component set and signals in

the external event signal set for this external event will be changed to

their new values. Then the SYSTEM.UPDATE routine will be called.

If the event is an AVAILABILITY sample, then the system indicator

variable, which indicates whether or not the system is in a satisfactory

state, will be tested. The result will be summed with previous and future

results for that particular time point, and stored for use in generating the

output file. No change to the system is made by this interruption, therefore

time is advanced to the next event in the event queue without any changes to

the system being performed.

If the event is a component failure, then the COMPONENT process for

that particular component will again begin operation. The function

FAILURE.TRANSLATION will be called and used to determine the state of the

failed component. The failed state will be dependent on the type of

component and the initial state, e.g. an open valve will fail closed and a

closed switch will fail open. FAILURE.TR-ANSLATION is an example of the use

of the SIMSCRIPr function comimand which simplifies programming when a series

of commands is reused often. The commands in the FAILURE.TRANSLATION

function could be placed in the COMPONENT routine without complicating

Dynamic Simulation Model 84

execution of the program. Once the type of failure is determined, a

REPAIR.SUPERVISOR process will be activated and the SYSTEM.UPDATE routine

will be called.

The SYSTEM.UPDATE routine is used to connect all system components.

It is called any time a component changes state or an external event is

activated. It looks for changed signals or components and if it finds a

change, it calls the response function (SWIT"H, VALVE, etc.) for that

particular component or the component which contains the altered signal in

its input signal file. If this component changes state, or its output signal

changes strength, then it will be necessary to propagate this change through

the system. The routine continues to call affected components until no

further changes occur. This routine also monitors the overall system state

and changes it as necessary to reflect whether the system is available or

unavailable as a unit according to the definition provided in the input file.

The SYSTEM.UPDATE routine handles the loops which must occur in a

process interaction system. The routine stores the value of all system

signals and then looks for changes to this set. If a signal changes value

then this is an indication that changes are still occurring in the syster.

The routine looks for components which have changed state or whose input

signals have changed strength and calls the associated response function to

ensure the component is in the proper operational state. If it is not, it

may change according to its r ponse function and new output signal strengths

may be generated. These outputs are inputs to other components, so these

components must also be updated. Since the possibility exists for loops to

occur in system component structure, once all components have been checked

once, the new signals are compared with the old signal strengths. If a

difference is indicated, then it is possible that a component is not in its

Dynamic Simulation Model 85

desired state, thus the affected components are evaluated again. This

process continues until the value of all signal strengths at the end of an

iteration, equal the value of the signal strengths at the beginning of the

iteration, indicating that no component has changed state during the last

iteration. Since infinite loops may be possible, a maximum number of

iterations is specified, which, if exceeded, causes an error message to be

printed.

Another important function of the SYSTEM.UPDATE routine is to reset

the "failure clock" for components which change state. For example, whenever

an Active component is placed in standby from an operating condition, the

COMPONENT process associated with the Active component is reset so that when

it begins operation again it will start a new failure clock. This program

feature is very important for the analysis of phased mission problems where

it is feasible that a single component may be turned on and off several times

during a simulation run.

The five routines entitled ACTIVE, PASSIVE, CHECK VALVE, VALVE, and

SWITCH are the response functions called by the SYSTEM.UPDATE routine used

to determine the state of all system components and the value of their output

signals. These routines are used to change the state of components when a

new command is received or the strength of an input signal changes. Each

routine tests the state of the component and the value of all input signals

and compares the results to a set of control "rules" to determine the new

component state and the value of all of the component output signals. If the

component is Active, a Valve, or a Switch and it has been called upon to

change state, then the DEMAND.TEST routine is called to determine if the

component has failed or not. The DEMAND.TEST routine's sole function is

determine if a demand failure occurs based on the demand failure probability

Dynamic Simulation Model 86

for the component. Once the tests are performed and the component state is

modified, execution is returned to the SYSTEM.UPDATE routine.

After a component has undergone failure and the effect propagated

through the system, the REPAIR.SUPERVISOR routine is called. The

REPAIR.SUPERVISOR process is not developed at this point to meet all of its

potential. This process is currently used to start a repair process once a

component is failed. Thus it simply reactivates the component process which

controls the repair time calculation for 'he component. The repair process

is activated from the COMPONENT routine whenever a component fails. The

listing of the REPAIR.SUPERVISOR process in Appendix B contains a version

which immediately starts a repair once a failure has occurred. Line 31,

which causes a Weibull distributed repair delay, is not being used (it is

"commented" out). It is used in one of the examples of Chapter 4. By

changing the values of a and b in I s 23 and 24 it is possible to change

the repair delay distribution. However, if different repair delay

distributions are desired for different components, then the input file

structure and other program characteristics must be changed.

The REPAIR.SUPERVISOR process could also be used to limit the amount

of repair resources available. It is a simple matter to count the number of

components failed and the number of components under repair by checking the

status variable associated with each component. Then if too many components

are failed it is feasible to delay repair of some components until repair is

finished on other components. It is possible to prioritize repair based on

which component has been failed the longest since when a component fails its

failure time is recorded. If other prioritization schemes are desired they

can be programmed in to the REPAIR.SUPERVISOR process.

The COMPONENT process is used to control the transfer between good and

Dynamic Simulation Model 87

failed states for all components of the system. There is a COMPONENT process

for each system component and these Components are created by the

Run.Initialize routine. Within the COMPONENT process there is a section

which controls the transfer from operational to failed and a separate section

which controls the transfer from failed to operational. Whenever a component

changes state the SYSTEM.UPDATE routine is automatically called to propagate

the component change through the system as discussed above. Under the

current program structure, when a component changes state from operational

to failed, the component goes to a suspended state. The repair process is

not begun until the REPAIR.SUPERVISOR process reactivates the component.

Once the STOP.SCENARIO event is reached in the event queue, the

STOP.SCENARIO process is executed. This process removes all remaining events

from the event queue and resets all component processes so that all system

processes are ready to begin operation for the next trial. With no events

now remaining in the event queue, operation of the program is returned to the

MAIN routine which causes the RUN.OUTPUT routine to be called. The

Run.Output routine is used to write the program results to an output file.

The results provided are of two types. There is a print out of the time

dependent unavailability data and there is a list of the average system

unavailability distribution. Examples of output files are included in

Appendix E and will be discussed in Chapters 4 and 5.

3.6 Chapter Summary

In this chapter the DYMCAM dynamic simulation model has been discussed.

The discussion began with a review of some currently available simulation

languages. These various approaches of event scheduling, process

interaction, and continuous simulation were discussed and it was pointed out

that all approaches are valuable to Monte Carlo simulation for complex

Dynamic Simulation Model 88

systems. It is recognized that SIMSCRIPT 11.5 contains programming

characteristics allowing for use of all three modeling approaches. Table 3.1

shows a comparison of four simulation languages along with FORTRAN and it is

clearly evident that SIMSCRIPT is at least as good as, if not better, than

the other languages for Monte Carlo simulation applications to evaluate

system reliability. A discussion of SIMSCRIPT 11.5 programing features is

also included.

Sections 3.3 of the chapter dealt with the program objectives for the

DYMCAM model and section 3.4 discussed the basic assumptions made. In the

final section of the chapter the DYMCAM program is described. Its many

subroutines are listed and brief explanations given of what the purpose of

each routine and process is, to give a general understanding of what the

program does. For a complete discussion of input file preparation for the

DYMCAM program, Appendix A should be consulted. A complete program listing

is provided in Appendix B. Specific program features and limitations will

also be covered in the discussions of particular problems tested in the

examples of Chapter 4 and Chapter 5. The next chapter of this work deals

with tests of the basic DYMCAM dynamic simulation model.

Dynamic Simulation Model 89

Chapter 4

Test Runs and Results

4.1 Introduction

The DYMCAM program was developed as a basic benchmarking model to

demonstrate the capabilities of a simulation approach to solving system

availability analysis problems. It does not give results that are

necessarily any better than other methods, but it has the advantage that it

can solve more complex problems. The capabilities of the basic DYMCAM

program are:

1) It can model external events necessary for phased mission

problems.

2) It treats exponential failure and Weibull repair distributions.

3) It provides dynamic unavailability information about the system

and also average unavailability information.

4) The base model can be easily modified to treat more complex

analysis problems.

In this chapter several basic tests of the DYMCAM program are conducted

to demonstrate these capabilities. The results obtained ar. compared with

analyticai results were applicable, and with numerically generated results

in the more complicated examples. A fourth order Runge-Kutta method,

obtained from reference P-4, is used to solve the Markov equations for the

systems which can be modeled by this approach. The GO-FLOW example is

compared with exact results as computed using the GO-FLOW method.

The first problem considered involves a single component with

exponential repai and failure times. For this example, which can easily be

* modeled as a two state Markov system, the governing equations can be solved

analytically for comparison. The second illustration also involves a single

Dynamic Simulation Model 90

component with exponential repair and failure; in addition, it includes a

second repair state which also has an exponential transition time. This

three state problem can be solved analytically using a Markovian approach.

The third problem involves three pumps in parallel, in series with a

valve. Success of the system requires two of the three pumps to operate and

the valve to be open. This problem involves a slight change to the program

to consider the requirement for flow to be present from two pumps. For this

problem there are sixteen possible system states with four of the states

leading to system success. To solve the sixteen Markov equations would be

difficult to do analytically, therefore the numerical Runge-Kutta integration

method is used.

The final example pertains to a GO-FLOW model. This approach is used

to solve phased mission problems, therefore a comparison would show the

usefulness of the DYMCAM program for solving a phased mission problem.

Results are compared with the analytic results obtained from the GO-FLOW

solution to the problem. In addition, this problem is used for a sensitivity

analysis of the program to demonstrate the variation of the accuracy of the

DYMCAM program results with the number of Monte Carlo trials performed.

The chapter concludes with a summary of the performance of the basic

DYMCAM dynamic simulation model over the test cases considered. General

comments are made concerning the demonstrated capabilities and the accuracy

of results. Consideration is made of how this approach compares with other

system reliability analysis methods.

4.2 Single Component, Single Repair State

The first example problem to be tested on the DYMCAM program is a very

basic example for which an analytical result is readily available. The

analytical equation governing the unavailability of the component is:

* Dynamic Simulation Model 91

Q(t) = [. 4 1) {i - exp[-(A+t)t]} (4.1)

where A = failure rate

= repair rate

and

Q(t) = probability component is failed at time t

The illustration is a single component with exponential repair and failure

rates. For ease of examination, equal repair and failure rates were

considered. The asymptotic value of system unavailability is clearly 0.5

since the component will spend equal time in each of the two possible states.

The DYMCAM program computes both instantaneous unavailability of a

system to provide the dynamic output, and it computes the average

unavailability. Instantaneous availability is computed by stopping the

* simulation (during each Monte Carlo trial) at a user-specified time ana

checking the system to see if it is in a failed state. A success state is

indicated if the system indicator variable is equal to one, and failure is

* indicated by a zero. Thus the system indicator value is summed over all of

the Monte Carlo trials . _ each selected time point. A different variable

is kept to sum the value for each time point. After all runs are completed,

* the totals of these variables are divided by the number of trials. If the

result equals one, then the system was always available at that time point.

If the result is zero, then the system was always unavailable. Numbers

between zero and one reflect the probability that at the instant of the time

point, the system was available. Thus by stbtracting all values from one,

an estimate of the instantaneous unavailability is made for each selected

time point. The simulation result is an estimator for the exact result given

by equation 4.1. The simulation estimates apply at the discrete points

*Dynamic Simulation Model 92

Unavailability

- - .- * * ~Time

Simulation
D urationi

Firat Monte Carlo Trial

............. Second Monte Carlo Trial

* Figure 4.1 simulation Unavailability Time Line

*Dynamic Simulation Model 93

chosen for analysis in the program.

Average unavailability is calculated over the duration of a simulation.

Consider the time line of Figure 4.1. For each trial there will be a

distribution similar to the ones shown, but with failure and repair events

occurring at different times. For each Monte Carlo trial the area under the

curve is integrated and divided by the total simulation duration time. This

is an automatic function available in SIMSCRIPT. Since the height of the

line in Figure 4.1 is one, the integral of the area under the curve simply

equals the total time during the simulation duration for which the system was

unavailable. By dividing this result by the total simulation time, an

estimate of the average unavailability is obtained. For each trial this

result will be slightly different, thus the average unavailability is stored

for each trial, and after all trials are completed, a mean, a variance, and

selected percentiles of the distribution can be printed. The resulting

distribution is an estimator of the exact result given by the equation:

T
*Qavrg (for 0 K t < T) T [Q (t) dt (4.2)

To perform the test for proper asymptotic results, the failure and

repair rates were chosen to be 0.01 per hour. Thus after approximately 200

hours the system will have reached its asymptotic condition. Each simulation

run covers 10,000 hours. For the simple system only 100 Monte Carlo trials

were run to give satisfactory results. To show the fluctuations in

unavailability about the asymptotic value, the system instantaneous

unavailability was printed at every 500 hours of the simulation. To see the

average system unavailability the time averaged system unavailability for

each trial was printed.

Table 4.1 shows the fluctuation of the instantaneous system

Dynamic Simulation Model 94

unavailability alout the desired value of 0.5. Over the relatively small

number of Monte Carlo trials performed we see that there is a rather large

fluctuation. This can readily be reduced by increasing the number of trials

since the standard deviation of the result is related to the number of trials

by one over the square root of the number of trials.

Table 4.1

Single Component, Single Repair State, Instantaneous Unavailability

TIME UNAVAILABILITY
0.0 0.0

500.0 0.52
1000.0 0.38
1500.0 0.51
2000.0 0.60
2500.0 0.48
3000.0 0.48
3500.0 0.46
4000.0 0.51
4500.0 0.47
5000.0 0.45
5500.0 0.56
6000.0 0 41
6500.0 0.54
7000.0 0.48
7500.0 0.45
8000.0 0.50
8500.0 0.51
9000.0 0.57
9500.0 0.55

10000.0 0.49

Using-the values of time averaged unavailability for each of the 100

Monte Carlo trials, a graph was constructed showing the distribution of

unavailability values. This is shown in Figure 4.2. This figure portrays

basically the same information about the model as Table 4.1. The difference

is that Table 4.1 provides data that was computed using the instantaneous

unavailability estimation procedure discussed in conjunction with equation

4.1 and Figure 4.2 shows the distribution of the time averaged unavailability

estimator as discussed in conjunction with equation 4.2. The exact average

Dynamic Simulation Model 95

SINGLE COMPONENT

SINGLE REPAIR STATE (X-,uL-0.01)
30

MEAN = 0.4959
VARIANCE = 0.0026

25

-20 K
L

z

15 X

' X X X~10-XX

5-' '\ X

5N

0.2 0.3 0.4 0.5 0.6 0.7 0.8

UNAVAILABILITY

Figure 4.2 Single Component, Single Repair State

Average Unavailability

Dynamic Simulation Model 96

unavailability can be found by performing the integral in equation 4.2.

Doing this integration, where X - i- 0.01, the result is found to be 0.4975

following 10,000 hours of operation. This res.ult agrees within less than

one percent with the mean value of the distribution shown in Figure 4.2. The

variance of the distribution indicates a standard deviation of the result of

+ 0.05. For many applications this deviation may be insignificant. The

standard deviation can be reduced by increasing the number of Monte Carlo

trials performed as shall be demonstrated in a later example.

Another area of interest is whether or not the DYMCAM program provides

adequate time dependent unavailability information. Another test was run

with the same example problem only over a simulated time period of 200 hours.

To reduce the wide variance experienced in the above example the number of

Monte Carlo trials was increased to 1000. For comparison the results are

plotted in figure 4.3 with the analytic results obtained by Markov analysis

of the two state component as shown in equation 4.1.

Figure 4.3 shows that the simulation model provides good time dependent

results for this example. At large values of time, however, it is seen that

the simulation starts to deviate from the desired results. In fact, for

times greater than 200 hours, the simulation continues to fluctuate above and

below the desired 0.5 value for unavailability. This, again, is a

demonstration of the fact that there will be statistical fluctuations in a

Monte Carlo simulation. The fluctuations are smaller the larger the number

of trials used.

A final point of concern with a simulation approach to systems

reliability analysis is the computer time required to perform the analysis.

• For this simple one component system the time required to obtain the above

results was approximately 30 minutes on an IBM compatible XT machine running

Dynamic Simulation Model 97

CDF

SINGLE COMPONENT

SINGLE REPAIR STATE (/-=L=.0i)
1.0~

0.8

00.HO0.6

0<

>0.4
"

0Z

0.2

SIMULATION L

0.0 , , MARKOV

0 50 100 150 200

* TIME (hours)

Figure 4.3 Single Component, Single Repair State

* Time Dependent Unavailability

0 Dynamic Simulation Model 98

at 7.16 MHz. The average unavailability test required a large amount of time

due to the long simulated time period of 10,000 hours, which allowed for an

average of fifty failure and repair cycles per Monte Carlo trial. The value

of fifty is assumed since if the mean failure and repair times are both equal

* to 100 hours, then every 200 hours the component will, on average, go through

a complete cycle of failure and repair. The time dependent analysis required

30 minutes to run even though it simulated a shorter time period, because the

• unavailability of the system was sampled once every simulated hour (200

points) which slowed down program execution. The program runs in about one

sixth the time on a COMPAQ 386 machine. Methods of reducing computer time

• required are discussed in Chapter 6.

4.3 Single Component, Dual Repair State

The second example problem is an extension of the first, which

* demonstrates a capability of the REPAIR.SUPERVISOR routine (a subroutine in

the DYMCAM program that determines when component repair is initiated) and

the ease at which the DYMCAM program can be modified to meet specific

applications. The problem involves a single three state component which has

an exponentially distributed repair delay time before the component begins

the repair process.

In Appendix B the entire program listing is shown. In the

REPAIR.SUPERVISOR process routine, line 31 contains the WAIT command used to

create the third component state. It has been modeled as a Weibull

distributed variable, but by proper choice of the parameters, the Weibull

distribution becomes an exponential distribution. The Weibull distribution

is characterized by the equation:

ft [[] a-i exp [,]ja
= p 4.b

* Dynamic Simulation Model 99

where, a and b are the distribution parameters. By letting the parameter a

equal 1.0, the Weibull distribution becomes an exponential distribution with

lambda equal to 1/b. Lines 23 and 24 define the exponential distribution

with a mean failure rate of one failure every 100 hours. If, in the future,

it is desireable to enter different delay distributions for various

components, the parameters for the Weibull distribution can be read in the

INPUT routine in the same manner as the repair distribution parameters.

The failure and repair rates for this example were chosen the same as

for example number one. Thus with a mean repair delay time of 100 hours, the

component now has three equal transfer rates from its three states. Thus it

is evident that for the asymptotic case, the component will spend equal time

in each of the three states. The component is only available when it is in

its operational state, thus the asymptotic unavailability is two thirds.

To test the asymptotic unavailability the DYMCAM program was run for

a simulated component operation of 10,000 hours and 100 Monte Carlo trials.

As in example one, the component was modeled as a passive element, although

results would be the same for modeling the component as any of the other four

elements for this simple case. Again the unavailability was sampled at 500

hour intervals to show the fluctuation of the value around the expected value

of 0.6667 corresponding to two thirds. Table 4.2 shows the results which

indicate again that for the small number of Monte Carlo trials used, the

variance is quite large.

For this test the average system unavailability was also printed out

for each of the 100 Monte Carlo trials. The range of values was divided into

nine bins and the number of trials in each bin plotted against the central

* unavailability value for that bin. The results are shown in Figure 4.4. By

using the fourth order Runge-Kutta technique to determine the time dependent

0

* Dynamic Simulaion Model 100

component unavailability over the 10,000 hour period, as is done for Figure

4.5, and then numerically integrating the result from time zero to 10,000

hours and dividing by the total time (10,000 hours), the exact result is

found to be 0.6634. This indicates that the first 200 hours of operation did

contribute slightly to lowering the result obtained. The simulation result

agrees with the exact result within less than one percent difference. Again

the standard deviation of the simulation result is + 0.05 which may be

insignificant for some analyses.

Table 4.2

Single Component, Dual Repair State Instantaneous Unavailability

TIME UNAVAILABILITY
0.0 0.0

500.0 0.63
1000.0 0.70
1500.0 0.70
2000.0 0.68
2500.0 0.67
3000.0 0.65
3500.0 0.67
4000.0 0.72
4500.0 0.69
5000.0 0.64
5500.0 0.59
6000.0 0.63
6500.0 0.68
7000.0 0.65
7500.0 0.68
8000.0 0.69
8500.0 0.68
9000.0 0.61
9500.0 0.70

10000.0 0.64

• To compute the time dependent unavailability of this component the

simulation time was reduced to 200 hours, and the number of trials increased

to 1000 to reduce the variance of the results. Unavailability samples were

• taken every simulated hour and the results are plotted in Figure 4.5. For

S

*Dynamic Simulation Model 101

SINGLE COMPONENT

*DUAL REPAIR STATE 0 '
30- I

MEAN =0.6644

VARIANCE =0.0023

25-

*z

* 205

z

0.4 0.1.608 0.-.
* UNAAILAILIT

Fiur 44 inleCopNetDulRpiSae

*~~~~ Avrg Niliit

NN

Dynamic Simulation Model 102

CDF

SINGLE COMPONENT

DUAL REPAIR STATE (X= 1 =wj2=0.0 1)
1.0 . . .

0.8

>0.4
z

0.2

SIMULATION
- MARKOV

0 . -. I I I I

0 50 100 150 200

TIME (hours)

Figure 4.5 Single Component, Dual Repair State

Time Dependent Unavailability

Dynamic Simulation Model 103

this example it is also possible to derive the analytic equations for the

probability that the system is in any one of its three states using simple

Markov procedures. The three equations are:

dP0 = AP P (4.4)

dP P + AP and (4.5)

-js1P1 A 0,

dP2
d- 2 2 + where A = = = 0.01 (4.6)

Rather than solve these equations using Laplace transforms or matrix

exponentiation techniques, a fourth order Runge-Kutta numerical integration

routine taken from reference P-4 was used. The time dependent probability

of the component being in state 0 was calculated and the result was

subtracted from one to give the component unavailability. This result is

plotted in Figure 4.5 for comparison with the simulation results.

From Figure 4.5 it is seen that the simulation program again gives good

results for the time dependent unavailability. As the value of simulated

time increases there is a fluctuation of the simulation results about the

desired value, but as explained before this can be reduced by increasing the

number of trials. The computer time required for these two experiments was

comparable with the first example problem (approximately 30 minutes). The

addition of the third component state did not significantly alter the time

required to complete the run. The most important contributions to running

time appear to be the length of simulation time for each trial and the number

of time samples taken during each trial (the sampling process interrupts the

simulation).

4.4 Two Out of Three Pumps

The third test case considers a more complicated system composed of

Dynamic Simulation Model 104

three pumps connected in parallel. Figure 4.6 shows a diagram of the system.

The output of the pumps is fed to a common header where the flow then enters

a valve. Success of the system requires at least two pumps to be operating

and there to be flow output from the valve. The DYMCAM program, as written,

does not currently treat the strength of signals between components, thus a

slight modification was required to allow this test since the program would

not know if the output signal from the valve was the result of one, two, or

three pumps operating. The modification also allows the determination of the

system status simply by checking the output process signal from the valve.

The alteration made to the program for this test was made in line

number 129 of the VALVE routine. By changing the test to require two input

processes, the valve would not have an output unless at least two of the

pumps are providing input to the valve. There are other ways this problem

could have been modeled, but this method appeared to be the most

straightforward.

Unlike the previous two examples, this problem does not have a simple

analytic solution for the time dependent unavailability. To simplify

understanding of the test results, all pumps are chosen to be identical and

the valve was modeled with failure and repair distributions identical to the

three pumps. There are four components which can be in either a failed or

operational state which means the system can be in 24 - 16 possible states.

Since "11 failure and repair rates are equal, in the asymptotic case each

system state has equal probability of occurrence. Only four of the states

correspond to the system being in an available condition, thus twelve states

(or three fourths of the states) contribute to system unavailability.

Clearly the asymptotic unavailability should be 0.75.

Dynamic Simulation Model 105

Two Out of Three Pumps

Pump 1

Valve

Pump 3

Output

Fluid
Supply

Figure 4.6 Two Out of Three Pumps System Diagram

Dynamic Simulation Model 106

As in the previous two examples, the program was run for a simulated

time period of 10,000 hours and for 100 Honte Carlo trials. Table 4.3 shows

the fluctuation of unavailability about the desired value of 0.75. Again,

the failure and repair distributions were chosen to be exponential with mean

values of 100 hours. Figure 4.6 indicates that the system has reached its

asymptotic state after approximately 200 hours. Thus the actual value for

average system unavailability should be slightly less than the value of 0.75,

which would be the exact result achieved for average system unavailability

as time goes to infinity. This was also the case with the first two examples.

Table 4.3

Two Out Of Three Component Instantaneous Unavailability

TIME UNAVAILABILITY
0.0 0.0

500.0 0.72
1000.0 0.80
1500.0 0.76
2000.0 0.75
2500.0 0.78
3000.0 0.78
3500.0 0.73
4000.0 0.74
4500.0 0.66
5000.0 0.76
5500.0 0.68
6000.0 0.66
6500.0 0.77
7000.0 0.78
7500.0 0.71
8000.0 0.73
8500.0 0.67
9000.0 0.77
9500.0 0.71

10000.0 0.81

The average value of unavailability over the 10,000 hour simulation was

printed for each of the 100 trials and the resulting distribution is plotted

in Figure 4.7. This figure indicates that the mean value of unavailability

*Dynamic Simulation Mjodel 107

TWO OUT OF THREE PUMP S & ONE VALVE--

*X X 0. 01)
30-

MEAN 0.7(428
VARIANCE =0.00 11

25-

II

~15X

XI-

0 7
O . 7 0.6 0.7 0.8 0.9 1.0

UNAV AIABILITY

Figure 4.7 Two Out Of Three Component

* Average Unavailability

* Dynamic Simulation Model 108

is 0.7428 which agrees well with the expected value of slightly less than

0.75, and it is seen that the standard deviation of the distribution is 0.03.

This value of standard deviation is approximately half of that obtained for

the first two example problems.

The time dependent performance of this system is also of importance,

thus a second run was done over a simulated time period of 200 hours using

1000 Monte Carlo trials. The unavailability was sampled every hour to

provide an accurate picture of the simulation program performance. For

comparison, the Markov equations for the system were written. There are

sixteen possible states and these are:

0 - All components are good
1 1 - Pump #1 failed
2 - Pump #2 failed
3 - Pump #3 failed
4 - Valve failed

5 - Pumps #1 and #2 failed
6 - Pumps #1 and #3 failed

* 7 - Pump #1 and Valve failed
8 - Pumps #2 and #3 failed
9 - Pump #2 and Valve failed
10 - Pump #3 and Valve failed

11 - Pumps #1, #2, and #3 failed
12 - Pumps #1 and #2 and Valve failed

* 13 - Pumps #1 and #3 and Valve failed
14 - Pumps #2 and #3 and Valve failed
15 - All Components are failed

Figure 4.8 shows the Markov state transition diagram for this system. All

* transition time distributions are the same and given by \i - 2 - U

12 - 0.01 per hour.

Using these sixteen states the Markov equations for the system were

* written. These equations lead to a sixteen by sixteen matrix which is not

a trivial problem to solve, therefore a fourth order Runge-Kutta numerical

integration routine (from ref. P-4) was used to solve for the probability

that the system is in any one of its sixteen states during the time interval

0 mmmm

* Dynamic Simulation Model 109

0

Note: All Transfer Rates are Equal

Figure 4.8 Markov State Transition Diagram

* For Two Out of Three Pump System

0

Dynamic Simulation Model 110

CDF

TWO OUT OF THREE PUMPS & ONE VALVE
(X1 X2 : A2 0.01)

1.0-

0.8

1 0.6

>0.4
z

0.2

SIMULATION
- MARKOV0 .0 ,, ,,.

0 50 100 150 200

TIME (hours)

Figure 4.9 Two Out Of Three Component

Time Dependent Unavailability

* Dynamic Simulation Model 111

from zero to 200 hours. States 0, 1, 2, and 3 correspond to the system being

available therefore the probabilities that the system is in any one of these

four states is summed and subtracted from one to give the system time

dependent unavailability. This exact solution is plotted in Figure 4.9 along

with the simulation results for comparison.

It is seen from Figure 4.9 that even for this more complicated system,

the DYMCAM simulation program provides good results for the system time

dependent unavailability. Again the fluctuation of the results about the

desired result can be seen at larger time values and it is evident that the

accuracy of Monte Carlo analysis is directly related to the number of trials

performed.

For this example problem, the computer time required to run the 10,000

hour simulation run for estimation of the asymptotic unavailability value was

approximately three hours on an IBM compatible XT running at 7.16 MHz. The

second run to determine time dependent unavailability required four and one

half hours. The significant increase over the time required for the first

two tests is due to the fact that this problem is more complicated (sixteen

system states as apposed to two or three) which leads to a far greater number

of calculations to be performed during execution of the program. The

difference between the two times required for the asymptotic run and the time

dependent analysis run reflects on the fact that for more complicated

systems, the number of Monte Carlo trials performed will have the

• controlling effect on the amount of time required to complete a computer run.

Considering the fact that the accuracy of the results is dependent on the

number of trials performed, it is evident that methods should be explored to

* reduce the amount of time required for a computer run. The DYMCAM code could

probably be programed more efficiently. It was written to be as transparent

S

Dynamic Simulation Model 112

as possible and therefore may not be as efficient as possible.

4.5 GO-FLOW Example Problem

The fourth example problem considered will demonstrate the phased

mission capability of the DYMCAM program. For comparison, this problem is

derived from the GO-FLOW example problem discussed in reference M-2. The

solution derived from the methods of reference M-2 will be used for

comparison with the results of the simulation method.

The problem to be solved involves a simple electrical circuit. Figure

4.10 gives a diagram of the system. It is composed of a battery, having a

demand failure probability of 0.1, which will supply power to two parallel

circuits. Each circuit has a switch and a light bulb. The switches are

identical and have a demand failure probability of 0.3. Neither the battery

nor the switches are presumed to experience run time failures. The light

bulbs in the system are considered identical and they have a 0.2 probability

of failing on demand and an exponentially distributed run time failure rate

with a mean value of one failure every 1,000 hours.

The actual problem solved in reference M-2 considered that the switches

had a probability of premature closure, however in the DYMCAM model this type

of failure would be modeled as a run time failure and would mean that there

is an equal probability that the switch could open once it is closed. Since

the latter condition was not considered in reference M-2, the premature

failure probability was excluded from the simulation analysis. A numerical

solution was performed on the modified GO-FLOW problem to provide the

comparison results.

The phased mission problem to be solved considers that at time zero the

battery is connected to the circuit and has a 0.9 probability of being good.

A fraction of a second later one of the switches is closed, then ten hours

0 Dynamic Simulation Model 113

Switch 1 Light
Batr

* ISwitch 2 Light

Figure 4.10 Light Bulb Problem Diagram

* Dynamic Simulation Model 114

later the second switch is closed. The analyst wishes to determine the

probability that at least one light is on immediately following closure of

the first switch (call this time t-O.0), immediately prior to closing of the

second switch (time t-9.99 hours), instantly following closure of the second

switch (time t-10.0), and twenty hours after closure of the first switch

(time t-20.O). Analysis using the DYMCAM program was done varying the number

of Monte Carlo trials from 1,000 to 10,000 to demonstrate a sensitivity

analysis of the simulation method.

To solve this problem using the DYMCAM program, the external event

feature was used. This capability allows the input file to contain

instructions which will cause a signal to change at an instant of time after

the start of the simulation. This function was used to give the battery a

process signal input at time t-0.0, to give the first switch a command signal

to close at time t-0.0, and to give the second switch a command to close at

time t-10.0 hours. This unique feature allows the DYMCAM program to easily

solved phased mission problems.

Tables 4.4 and 4.5 summarize the results of the ten tests run on the

DYMCAM program. Table 4.4 shows the results using from 1,000 to 5,000 Monte

Carlo trials and Table 4.5 shows the outcome of tests using 6,000 to 10,000

trials. The tables show the actual probability of at least one light being

on at each of the four designated time points as calculated using the GO-FLOW

method and the corresponding values calculated with the simulation program.

The difference of the simulation value from the actual value is shown and the

percent error is calculated as the difference divided by the actual value.

For an indication of the variance, the number of trials which would need to

have been changed to give the actual results are indicated. For example,

for the time point t-20 hours and for 1,000 trials, Table 4.4 indicates that

0I

Dynamic Simulation Model 115

-10 trials would have to be changed. This means that 10 of the 1,000 trials

for which a light was not on at t-20 would need to have had a light test on

in order for the simulation results to agree with analytic results.

Table 4.4

Light Bulb Problem Results (1,000 to 5,000 trials)

NUMBER OF TRIALS
QUANTITY ACTUAL 1000 2000 3000 4000 5000

TIME 0.0 hours
Result 0.5040 0.4910 0.5070 0.5057 0.5033 0.5020

Difference from ---- -0.0130 0.0030 0.0017 -0.0007 -0.0020
actual value

Equivalent number ---- -13 6 5 -3 -10
of trials

Percent Error ---- -2.6 0.6 0.3 -0.1 -0.4

TIME 9.99 hcurs
Result 0.4990 0.4880 0.5025 0.5010 0.4985 0.4968

Difference from ---- -0.0110 0.0035 0.0020 -0.0005 -0.0022
actual value

Equivalent number ---- -11 7 6 -2 -11
of trials

Percent Error ---- -2.2 0.7 0.4 -0.1 -0.4

TIME 10.0 hours
Result 0.7236 0.7060 0.7270 0.7320 0.7275 0.7266

Difference from ---- -0.0176 0.0034 0.0084 0.0039 0.0030
actual value

Equivalent number ---- -18 7 25 16 15
of trials

Percent Error ---- -2.4 0.5 1.2 0.5 0.4

TIME 20.0 hours
Result 0.7191 0.6980 0.7205 0.7257 0.7215 0.7212

Difference from ---- -0.0211 0.0014 0.0066 0.0024 0.0021
actual value

Equivalent number ---- -21 3 20 10 10
of trials

Percent Error ---- -2.9 0.2 0.9 0.3 0.3

Dynamic Simulation Model 116

Table 4.5

Light Bulb Problem Results (6,000 to 10,000 trials)

NUMBER OF TRIALS
QUANTITY ACTUAL 6000 7000 8000 9000 10000

TIME 0.0 hours
Result 0.5040 0.4995 0.4950 0.4971 0.4998 0.5007

Difference from ---- -0.0045 -0.0090 -0.0069 -0.0042 -0.0033
actual value

Equivalent number ---- -27 -63 -55 -38 -33
of trials

Percent Error ---- -0.9 -1.8 -1.4 -0.8 -0.7

TIME 9.99 hours
Result 0.4990 0.4935 0.4889 0.4913 0.4939 0.4948

Difference from ---- -0.0055 -0.0101 -0.0077 -0.0051 -0.0042
actual value

Equivalent number ---- -33 -71 -62 -46 -42
of trials

Percent Error ---- -1.1 -2.0 -1.5 -1.0 -0.8

TIME 10.0 hours
Result 0.7236 0.7238 0.7204 0.7205 0.7214 0.7243

Difference from ---- 0.0002 -0.0032 -0.0031 -0.0022 0.0007
actual value

Equivalent number ---- 1 -22 -25 -20 7
of trials

Percent Error ---- 0.03 -0.4 -0.4 -0.3 0.1

TIME 20.0 hours
Result 0.7191 0.7185 0.7143 0.7145 0.7154 0.7186

Difference from ---- -0.0006 -0.0048 -0.0046 -0.0037 -0.0005
actual value

Equivalent number ---- -4 -34 -37 -33 -5
of trials

Percent Error ---- -0.1 -0.7 -0.6 -0.5 -0.1

It can be seen in these two tables that the error decreases as the

number of trials is increased and for 10,000 trials the percent difference

between the actual availability values and the estimates from the simulation

program are less than one percent for all time points. As expected, there

* Dynamic Simulation Model 117

is very little difference in the error percentages for two cases separated

by only 1,000 trials. For example, there is an average of only a 0.5 percent

difference between the values for the 3,000 trial case and the 4,000 trial

case. The amount of error should decrease with increasing number of trials

in proportion to one over the square root of the number of trials and this

is evident by comparing the 1,000 and 10,000 trial cases. If the values of

percent error at 1,000 can be taken to be characteristic of values that would

be obtained regardless of the random number generator used by the program,
0

then certain comments about the error can be made. For the four time points,

the average error for 1,000 Monte Carlo trials is approximately 2.5 percent.

The variance of the estimates should go as one over the square root of the

number of trials, therefore it is expected that the percent error for 1,000

Monte Carlo trials should be no greater than the square root of 1,000 divided

by the square root of 10,000 times the error for the 1,000 trial case.

Checking this assumption it is seen that the expected error should be no

greater than 0.8 percent. From table 4.5 it is evident that this assumption

is indeed correct and it seems probable that for any number of trials used

greater than 10,000 the percent error of the result should be no greater than

0.8 percent. However, to significantly reduce the error below this 0.8

percent value using the current program would take a prohibitively large

number of trials. In fact, using the above methods it is estimated that to

reduce the error margin to 0.5 percent or less would require in excess of

25,000 trials.

The computer time required for these tests was approximately fifty

minutes for every 1,000 trials, thus the 10,000 trial case took about eight

and one half hours to run. This time requirement refers to an IBM compatible

XT running at 7.16 MHz. The approximate time for the 10,000 trial on a 386

0

* Dynamic Simulation Model 118

personal computer is estimated to be about 1.5 hours. Even at this rate,

thou-'h, it would take computer runs of close to five hours to reduce the
0

error to less than 0.5 percent for this particular problem with the current

structure of the DYMCAM program. If more accurate solutions were necessary,

it is clear that modifications to the program will be essential on order to

reduce the computer time requirement, however, this kind of accuracy is

almost never needed since there is always a inevitable amount of uncertainty

in the original data.

Demonstrated by this example was the important DYMCAM feature of using

external events in phased mission analysis problems. GO-FLOW was designed

with this capability, but most other methods do not provide an easy method

for treating this type of problem. This capability can be exploited to

analyze all types of systems involving testing and maintenance functions.

4.6 Chapter Summary

In this chapter four example problems have been analyzed using the

DYMCAH dynamic simulation model. A single component with exponential repair

and failure distributions was considered to demonstrate program operation.

Next, a third state was added to the component in the form of an

exponentially distributed delay time between the failure and repair states.

This example demonstrated use of the REPAIR.SUPERVISOR routine and the ease

with which the program can be modified to meet specific needs. The third

example considered a more complex problem and demonstrated that the program

can model m-out-of-n components, although to do this properly the program

should be modified to consider the strength of process variables. The final

example treated a simple phased mission problem and illustrated the use of

the external event concept to turn a component on after the start of a

simulation time period. The results of all four examples were compared with

0

* Dynamic Simulation Model 119

analytic answers and the comparison was favorable. In each case the

simulation values agreed with expected results quite well.

It was seen that the simulation method can be used to evaluate the

asymptotic unavailability of a system, but more importantly, that it also

provides good results for a time dependent unavailability analysis. Analytic

asymptotic values agreed almost exactly with mean values of unavailability

distributions produced. Time dependent simulation results agreed well with

Markov solutions; however, differences between simulation and exact results

do not vanish as the simulation proceeds.

The DYMCAM program can be used for any type of phased mission problem

where it is necessary to turn components on and off during a simulated time

period. This capability was demonstrated with a very basic problem. This

potential should prove very powerful in systems reliability analysis. Most

current techniques are not designed for phased mission analysis.0
An important result observed was the importance of the program result

accuracy on the number of Monte Carlo trials used and the time requirement

necessary to achieve satisfactory results. A simulation technique such as

this provides an estimate of the unavailability of a system. This estimate

will have a distribution associated with it. The mean of the distribution

should equal the exact analytical result, if one is obtainable, and the

variance of the distribution is related to the number of trials performed.

Thus, though the mean of the distribution may be equal to the exact solution

after a small number of trials, there is no way of knowing this for certain

unless the analytical solution is available. The variance of the

distribution provides a measure of "confidence" in the mean value, thus to

have increased confidence in the simulation result, it is desireable to have

small variances. To accomplish this may require large amounts of computer

Dynamic Simulation Model 120

time.

The DYMCAM program shows that it provides accurate results for simple

problems. Further work should be done to modify the program to handle

different levels of process signals and also to improve the speed with which

the program runs. In the next chapter a problem involving a continuous

process will be treated which involves modifying the program extensively and

demonstrates the capability of simulation programs to treat continuously

variable signals.

* Dynamic Simulation Model 121

Chapter 5

Continuous Simulation TANK ProgramS
5.1 Introduction

Most reliability analysis methods are designed to treat only systems

which can be modeled using a discrete state space. This type of approach,

however, may not be adequate for analyzing certain systems including process

control problems which depend on continuous variables such as pressure,

temperature, flow rates, and tank water levels. This particular type of

problem has been discussed in detail by Aldemir in references A-1 and A-2.

Aldemir has developed a dynamic method which uses discrete Markov chains to

model the probabilistic behavior of the system to analyze such problems, and

in references A-1 and A-2 he applies his technique to several examples

including a process control system which regulates the water level in a tank.

The DYMCAM dynamic simulation model discussed in previous chapters does

not have the capability to treat failures of components whose state depends

on a continuous variable such as water level. In this chapter the basic

* program is modified to include this capability. Although the TANK program

developed here is designed specifically to solve the example problem treated

in references A-1 and A-2, it demonstrates the capability of the basic

simulation approach to handle analysis of complex systems which involve

continuous variables.

The chapter begins with a section describing the problem to be solved.

* This problem is similar to the example treated by Aldemir in reference A-1.

Aldemir treats the problem by considering the failure of the control system

itself, which means that if a unit is in a failed state in one system control

* region, this does not mean the component will remain in that state if the

process variable moves to another control region. The problem treated here

i0iI

* Dynamic Simulation Model 122

considers only the failure of individual input and output units. Thus once

a component fails, it remains in that failed state regardless of any changes

that may occur in the operating state of the system. Thus results should be

different than those predicted by Aldemir. Once the problem is described,

program modifications will be indicated which were necessary to simulate the

example. As much as is possible the DYMCAM program is left exactly as it was

in previous chapters and special subroutines and processes are added to treat

the continuous variable.

After the TANK program development is explained, the procedure is used

to solve two of the cases discussed by Aldemir for the process control

problem which controls a tank water level. Results are compared

qualitatively with results in the reference. A simple Markov approximation

to the system is also developed and results of the TANK simulation program

are compared quantitatively to this solution method. For the simple case

tested, results of the simulation model agree well with the approximate

Markov modeling of the system and also with Aldemir's solution. For the more

* complicated case tested, simulation results agree with Markov approximations

but not with results proposed by reference A-1. Explanations are given for

the difference.

* The TANK simulation program performs well on the specific problem

tested and demonstrates the capability of a Monte Carlo simulation aoproach

to be used in solving a continuous variable problem.

* 5.2 Problem Description

The problem to be solved consists of a fluid containing tank which has

three separate level control units. Figure 5.1 shows a diagram of the

• system. Each control unit is independent of the others and has a separate

level sensor associated with it. The level sensors measure the fluid level

*Dynamic Simulation Model 123

Liquid Liquid
Supply Supply

Level Signal Level Signal

UNIT UNIT 3

* Liquid Level
Level Signal (meters)

Inflow Inf low 43

TANK

Outflow

* Figure 5.1 Tank Problem Diagram

Dynamic Simulation Model 124

in the tank, which is a continuous process variable, and based on the

information from the level -sensors, the operational state of the control

units is determined. Each flow control unit can be thought of as containing

a controller which turns the unit on and off based on the signal from the

level sensors, as shown in Figure 5.1. Failure of the system occurs when the

tank either runs dry or overflows.

The tank has a nominal fluid level at the start of system operation of

zero meters. The maximum level of the tank is 3 meters (point b) and the

minimum level of the tank is -3 meters (point a). If the tank level moves

out of this range, failure of the system has occurred. Within this range

there are two set points at -1 meter (set point alphal) and +1 meter (set

point alpha2). These set points define three control regions for system

operation. Region one is defined from point a to alphal, region two is from

alphal to alpha2, and region three is from alpha2 to point b. When the fluid

level is in any of the three control region there is a specific action

required of each of the three control units. Each control unit acts

independently and is not aware of what the state of the other control units

is except through the change occurring in the process variable. Table 5.1

shows the control unit states for each control region.

Table 5.1

Flow Control Unit States as a Function of Fluid Level

Control Liquid Control Unit State
Region Level (x) Unit I Unit 2 Unit 3

1 x~alphal off on on

2 alphal<x<alpha2 on on off

3 alpha2<x on off off

Unit one is an outlet element providing a means for releasing fluid

Dynamic Simulation Model 125

from the tank to lower the level. In all cases discussed in reference A-l,

unit one is assigned an exponential failure distribution with a mean failure

time of 320 hours. This is the failure rate of unit one transferring to the

wrong state. When operating the unit allows fluid to flow out of the tank

at the rate of 0.01 meters per minute. Unit one receives a command from the

level controller to be on when the fluid level is in control region two or

three and it receives a signal to shut off when the fluid level is in control

region one. If the unit is modeled as a valve, it is clear that the valve

is normally open unless the fluid level is below the low level setting for

the tank, in which case the valve is closed. The component routine used to

model unit one as a valve is one of the routines contained in the basic

DYMCAM program code.

Unit two is a supply unit which provides fluid input to the tank. It

too has an exponentially distributed failure rate which applies to unit two

transferring to the wrong state. The mean failure time used for all cases

considered in reference A-I is 219 hours. When operating, the unit supplies

fluid at the rate of 0.01 meters per minute. This unit receives a control

signal to be on if the fluid level is in control regions one or two, and it

receives a signal to shut off if the fluid level is in control region three.

The unit can be modeled as a pump or an inlet valve. In this work the unit

was treated as a valve. It is only necessary that the component model be

able to fail open (on) or closed (off) and that it respond to control

signals.

The third unit is also a fluid supply element. It is identical in

nature to unit two except that it has a mean failure time of 175 hours.

Through most of the cases treated in reference A-l, the flow rate from unit

three is identical to unit two therefore providing 0.01 meters per minute of

* Dynamic Simulation Model 126

fluid, however in one of the cases (Case F of Ref. A-i), which is also

considered here, unit three only supplies 0.005 meters per minute of fluid.

Unit three is normally in an off (closed) state unless the fluid level drops

into control region number one, in which case the unit receives a signal to

turn on. Like unit two this unit can also be modeled as an inlet valve as

is done in the following analysis.

At the start of system operation the fluid level is in the normal

region (control region two) and units one and two are on while unit three is

off. Thus the flow rate into the tank is equal to the flow rate out of the

tank, and the fluid level is not changing. This state will continue until

one of the level control units fails. Then the fluid level will change

either up or down depending on which unit has failed, and when the fluid

level enters a new control region the controller will take action to halt the

* change. The new system state may or may not be stable, as is seen later in

the chapter, however failure of the system cannot occur with the failure of

a single control unit. The level will remain in the new control region, or

* oscillating between two control regions until a second unit fails. The

second failure is likely to cause the system to fail by the tank either

running dry or overflowing.

* Since component repair is not considered in this problem, all scenarios

will end in system failure. The type of failure experienced is dependent on

the sequence in which the units fail and also upon the timing of failure for

* certain cases in which the fluid level oscillates. The problem to be solved

in this reliability analysis is to determine the time dependent probability

of each of the two types of failure. The complication which prohibits this

* type of problem from being easily solved by other analysis methods, is that

component states are dependent on a continuous process variable. Modeling

0

Dynamic Simulation Model 127

of the process variable must be done, and a method must be available by which

control units are allowed to change state at non-deterministic times. In

other words the method of the DYMCAM program, which uses external events to

control phased mission problems, is not appropriate since the time at which

a component will be required to change its operating state will not be known

before the simulation is begun.

One characteristic of this problem does allow for a simple method of

approximating the failure results. This is the relationship between unit

failure time and the time required for the system to change from one control

region to another once a unit has failed. The three units have mean failure

times of 320, 219, and 175 hours respectively. If the tank fluid level is

at zero when a unit fails, then at a flow rate of 0.01 meters per minute it

will only take approximately 1.7 hours for the tank to change control

regions. If the level is at the edge of control region one, and must travel

to control region three, the longest amount of time that will be required is

approximately 3.5 hours. If these times can be considered small enough so

that the assumption can be made that a second failure does not occur until

the system has entered a new control region, then a straightforward approach

of initiating event analysis can be used and simple Markov chains can be

applied to solve the problem. This approach is used as an approximate method

against which the simulation results can be checked for an estimate of

simulation performance.

For the second case treated, in which the flow rate from unit three is

reduced to 0.005 meters per minute, there are failure sequences which will

lead to the fluid level changing at only 0.005 meters per minute. In this

case .he maximum time required to change from one control region to another

is approximately 7 hours. Clearly the assumption that a second failure does

Dynamic Simulation Model 128

not occur during this transit time period is not as good for this case, and

results using the approximate technique will not be as accurate. However,

results are still expected to be quite good.

5.3 The TANK Program - Modifications to DYMCAM

The major change which was necessary to make in the DYMCAM program in

order to solve the tank problem was to add a routine which models the

continuous process variable. SIMSCRIPT 11.5 has a continuous variable

modeling capability , which is described in reference F-I, and this was used

to treat the fluid level in the tank. This new variable required the

addition of several subroutines to the DYMCAM program and these are described

in this section. In addition, certain subroutines of the original program

required minor modification. Table 5.2 lists all the new subroutines added

and all the old subroutines to which adjustments were made. A complete

SIMSCRIPT program listing of the new subroutines is contained in Appendix C.

The modified subroutines are contained in Appendix B. In Appendix B, those

subroutines which were modified for the tank problem contain the message

"TANK" at the far right hand side of the page next to the added or altered

lines of code. These commands should be removed or altered to use the DYMCAM

program by itself. It should be emphasized that the sole purpose of the

particular modified program is to demonstrate a simulation modeling approach

to a reliability problem involving continuous process variables.

Modifications made to the DYMCAM program have been chosen with an eye on

rapid implementation rather than programming generality.

The most fundamental addition to the program was the TANK process.

This is the continuous process which provides SIMSCRIPT with the capability

to solve continuous variable systems. The continuous capability of SIMSCRIPT

11.5 is described in detail in reference F-i by Fayek. The difference

Dynamic Simulation Model 129

between discrete and continuous event simulation is fundamental. In purely

discrete event simulation the model advances in time from event to event

using entries in an event queue. It is assumed that the system remains

unchanged between scheduled events and can change only at the designated

event times. For a continuous model, variables are assumed to vary

continuously with advancing time. Thus time is incremented by a small amount

and all variables are updated. This is done by associating a differential

equation with each continuous variable which indicates the rate of change for

that variable. Then as time is advanced by discrete time steps, integration

is performed to update the status of the continuous variable at the end of

each time step.

Table 5.2

TANK Subroutines
Subroutine Description

Modified DYMCAM Routines
PREAMBLE Modified to reflect new variables

and processes
MAIN Modified to Initialize and stop

the Tank
CALL.UPDATE Modified to start Tank process
RUN.INITIALIZE Modified to add signals
SYSTEM.UPDATE Modified to update flow rates

New Routines
FLOW.UPDATE Routine to calculate flow to and

from Tank
STOP.TANK Process to reset Tank after each

trial
TANK Continuous process to monitor fluid

level
TANK.CONDITION Function that checks for proper

control region operation
TANK.INITIALIZE.RUN Routine to initialize all variables

and sets for the Tank
TANK.INITIALIZE.TRIAL Routine to re-initialize specific

variables for next trial
TANK.UPDATE Routine to track System status and

control all units
WATER.LEVEL Routine providing integration

quantity for continuous
routine

Dynamic Simulation Model 130

SIMSCRIPT 11.5 uses a variable time step for which the user must

specify the minimum and maximum to be allowed. The integration routine can

be specified explicitly, or the Runge-Kutta integration routine which is

contained in the SIMSCRIPT language may be used. Also associated with the

integration routine are error parameters must be indicated to specify the

accuracy of integration calculations desired. All of these initializations

were entered in the TANK.INITIALIZE.RUN routine.

Figure 5.2 shows a flow chart of the operation of the TANK program.

Following through this chart will provide an explanation of the TANK program

operation and methodology. The function of routines of the DYMCAM program

will not be repeated here since they are described in Chapter 3.

The tank begins with the TANK.INITIALIZE.RUN routine which creates and

initializes the variables and signals associated with the tank. This is done

only once at the beginning of each computer run. Next, for every trial the

tank output signals, the tank level, and the initial flow rate are reset by

the TANK.INITIALIZE.TRIAL routine. After all other initialization is

completed by the DYMCAM program, the simulation clock is started. Failure

of all three units will be scheduled to occur at discrete times in the

simulation based on their failure rates, and t--e times are assigned by the

DYMCAH program.

Unlike the DYMCAM program, which uses only discrete event simulation,

the TANK program also contains the continuous tank level variable. Thus

after the start of the simulation, control of the time aspect of the program

is performed by the Tank process. This subroutine contains the statement

(line 15):

work continuously evaluating 'water.level' testing 'tank.condition'

* Dynamic Simulation Model 131

0

Initialize for Run
(Tan k.Initialilze.Ru n)I n

TraOutput Run

*Y ES

Initialize for Trial
(Tank.lnl tiallze.Trlal)I

Start Simulation
SI

Update Net Advance TimeFlow Rato One Time Step
(Tank) eTak

Call Update Water Level

Tank.Update H(Water.Level)

• NO <Control Region

* Has Tank NO Changed?

Set Control Signals
Record Type Properly

• of Failure (Tank.Update)

Change Control

Process Unit States
(System.Update)

0 Complete Discrete Update Flow In
Event Simulation And Flow out

(DYMCAM) (Flow.Update)

0 Reset Tank Tank Is
Process Now Okay

(Stop.Tank) I

* Figure 5.2 Flow Chart of TANK Program

0

Dynamic Simulation Model 132

This statement updates the tank water level using the WATER.LEVEL routine

which applies the differential equation:

d.level(tank) - net.flow.rate(tank)

The time step is variable between the minimum and maximum specified by the

user and in this case, is not variable since both values were set equal to

one hour. If a variable time step were allowed, then SIMSCRIPT would adjust

the step based on how fast the variable is changing. The integration

routine, Runge-Kutta in this case, calculates the water level at the new

time.

Once the new level is determined, the TANK.CONDITION routine is called

to verify that the tank condition is good. If it is, then the simulation

clock is advanced another time step, and the new water level is calculated.

If the TANK.CONDITION routine determines that: 1) the net.flow.rate(tank)

does not equal the flow.rate.in minus the flow.rate.out, 2) the tank has

failed by overflow or dryout, or 3) The control state is not correct based

on the current fluid level; then continuous time steps are stopped and

control continues in the TANK process. The net flow rate for the tank is

updated here next. The reason for this is to provide proper synchronization

for changing of the flow rate. After updating the net flow rate, the TANK

process calls the TANK.UPDATE routine.

The TANK.UPDATE routine serves two functions. First it checks the

water level to see if overflow or dryout has occurred. If either condition

has occurred, then the output signal from the tank, indicating tank status,

is set equal to zero (representing tank failure), and control is returned to

the Tank process. The TANK process then suspends itself. The rest of the

simulation time of the trial passes in discrete event fashion. When the

scheduled STOP.TANK and STOP.SIMULATION times are reached, the TANK process

* Dynamic Simulation Model 133

is reset and the next trial begun. It should be noted that the system

indicator variable can have only one of two values indicating either system

success or failure. Since both tank overflow and tank dryout are failure

events, it is necessary to simulate failure in each mode separately. This

is done by altering the computer code to count only failures of one type or

the other during a particular run of the program. To test for the

probability of tank overflow, lines 13 through 17 of the TANK.UPDATE routine

were rendered un-executable, and when testing for tank dryout, lines 13 to

17 were restored and lines 24 through 28 of the Tank.Update routine were

removed. In either case, once the tank has run dry or overflowed, continuous

operation of the system is suspended. Of course, an alternate modification

is to revise the SYSTEM.UPDATE and RUN.OUTPUT routines such that multiple

output states are recognized. This was felt to be more complex than the

method adapted.

If the tank has not failed, then the TANK.UPDATE routine checks to see

if the unit control states are correct based on the fluid level of the tank.

If not, the TANK.UPDATE routine creates the proper control signals to send

to the three units to change their operating state to the proper condition.

To cause the units to change state, the SYSTEM.UPDATE routine is called.

This is a DYMCAM routine which changes the states of components based on

changes in signals and on changes in other system component states. A new

line added to the SYSTEM.UPDATE routine for the TANK problem, appears at line

* 141. This command causes the FLOW.UPDATE routine to be called. This routine

calculates the flow rate going into the tank and the flow rate coming out of

the tank based on the state of the three control units. It does not directly

* calculate the net flow rate into the tank which is used by the WATER.LEVEL

routine. This is done in the TANK process to prevent the flow rate from

0 !|

Dynamic Simulation Model 134

changing during an integration time step.

Once the flow rates are updated, control is returned to the

SYSTEM.UPDATE routine. The SYSTEM.UPDATE routine, in turn, returns control

to the Tank.Update routine. Now the tank is in the proper operating

condition and thus control is returned to the TANK process. Since the tank

has not yet overflowed or run dry, the TANK process begins execution of the

continuous function again. Time is advanced by the given time step (one

hour), the level of the tank is updated, and the condition of the tank is

again checked. As long as the tank condition is good, operation continues

in this fashion. If the tank condition tests bad, then the continuous

operation is again suspended.

The failure rates used for the three control units in the tank problem

make it highly likely that the system will fail during the simulated 1,000

hour time period, therefore at some point the continuous process should stop

and the simulation will continue in the discrete event fashion. In the rare

case of no system failure during the 1,000 hour period, the continuous

process will be suspended by the Stop.Tank routine at the 1,000 hour time

point, and the system will be reset for the next trial. Of course, no

failure event would be recorded for such a trial.

Individual control unit failures are controlled by the DYMCAM progr"

When a failure occurs, the SYSTEM.UPDATE routine is called which in turn will

cause the flow rate into and out of the tank to be adjusted. This change

will effect the TANK program when the TANK.CONDITION routine detects that the

net flow rate to the tank does not equal the flow rate in minus the net flow

rate out, and as described above, the continuous operation will be

interrupted while the net flow rate is changed by the TANK process.

The new routines, TANK.INITIALIZE.RUN and TANK.INITIALIZE.TRIAL are

Dynamic Simulation Model 135

LProcess Input Signal Power Input Signal
(from system) (from system)I __

I UNIT 2] UNIT_ 3

Control Process
Signal Output

Process Output *

;ITANK Process Output

Control Signal

sttu ControlSignal I UNIT

Tank Status Signal Process Output Signal

(to system) (to system)

Figure 5.3 TANK Program Signals

* Dynamic Simulation Model 136

used to initialize all the parameters associated with the test. Most

importantly the TANK.INITIALIZE.RUN routine creates all of the output signals

associated with the tank. Since the DYMCAM program does not recognize the

tank as being a component, it is not assigned any output signals. Thus one

line is added to the DYMCAM RUN.INITIALIZE routine (line 51) to add five

signals to the total system signal count. Figure 5.3 shows all of the signal

associated with the TANK program. The five new signals are indicated by

stars. These signals are then initialized by the TANK. INITIALIZE.RUN

routine. Once created, the signals are treated in the same manner as all

other component signals. The five signals concerned are the three control

signals from the tank to each of the three units, the output process flow

from the tank to unit one, and a system status signal to indicate system

success or failure.

The TANK.INITIALIZE.RUN routine also creates the signal and component

files necessary for clean operation of the program code. The

TANK.INITIALIZE.TRIAL routine, which is executed prior to each trial, resets

the net flow rate to zero, sets the tank fluid level back to zero, turns the

flow out of the tank on, resets the system success indicator to "good," and

turns off the command signals to all three control units.

The STOP.TANK process operates in much the same fashion as the

STOP.SCENARIO process. It is used to suspend operation of the tank, if the

tank has not failed during the simulated time period (which has a very low

• probability of occurrence), and then to reset the tank so it is ready to be

started at the beginning of the next Monte Carlo trial.

Minor modifications were also made to the MAIN routine and the

* CALL.UPDATE process of the DYMCAM program. The MAIN routine was modified to

include calling the tank initialization routines and to call the STOP.TANK

* Dynamic Simulation Model 137

process. In addition the availability data structure was modified to print

out the desired results in the output file. The CALL.UPDATE process was

revised to include lines 14 and 15 which simply take the tank out of its

suspended state and cause it to start operation at the beginning of every

trial.

In addition, many lines were added to the PREAMIBLE to reflect all of

the new routines, processes, and variables associated with the TANK program.

These lines are indicated in the Preamble listing for the DYMCAM program in

Appendix B by the marker "TANK" which is placed at the far right hand side

of each line of code which was modified or added. The entire TANK program,

as a unit, was compiled and kept separate from the DYMCAM program, since

subroutines cannot be compiled separately, and the two codes are not used

together. They do, however, contain the same basic structure and the TANK

program should be viewed as an extension of the DYMCAM program, which remains

almost entirely intact in the TANK code.

The input file necessary to run the program is exactly the same format

as the input file for the DYMCAM program described in Appendix A. The only

point to note is that the three units were modeled as valves in the

simulation program. It is also important that the names of the level control

units be entered as unitl, unit2, and unit3 so that they are recognized by

the TANK program as the flow control units. An example input file for this

program is contained in Appendix D. The same input file is used for all

* tests, and changes are made in the program to reflect testing for the failure

condition of overflow or dryout and to alter the flow rate provided by unit

three. The output file generated by the TANK program is identical in format

* to the output generated by the DYMCAM program, and an example print out is

shown in Appendix E.

* Dynamic Simulation Model 138

5.4 TANK Results

Two example cases were considered in the testing process. In the

notation of reference A-i, Case A involves unit three having a flow rate of

0.01 meters per minute and in Case F the flow rate from unit three is changed

to 0.005 meters per minute. Otherwise the test cases are exactly the same.

The change made to reflect the different flow rate is made in the FLOW.UPDATE

routine. To test for the probability of tank overflow, lines 13 through 17

of the TANK.UPDATE routine were rendered un-executable, and when testing for

tank dryout, lines 13 to 17 were restored and lines 24 through 28 of the

Tank.Update routine were removed. This method was used to test for the

selected type of failure event, since both tank overflow and dryout are

failures and should not be counted together as failures during the same test

run.

As explained earlier, if failures can be assumed to be separated by at

least 3.5 hours in Case A and 7 hours in Case F, then it is possible to use

a Markov chain to approximate a solution to the problem. This approach

involves understanding the feasible failure sequences which can occur in each

case. An understanding of the failure sequences also provides insight into

the problem solution by simulation methods, so they will be described in

detail.

5.4.1 Analysis of Case A

For Case A the tank starts at time zero with all units operational, and

* units one and two turned on, and unit three turned off. The tank will

continue in this state with no change in the tank level until a failure of

a control unit occurs. The sequencing of failure is very important so each

* unit failing first will be considered separately. Figure 5.4 shows the state

transition diagram for this system. All states are defined in Table 5.3.

0

Dynamic Simulation Model 139

Tank Case A

xl

X2

X3 3

10 6 12 1311

OO.F. D.O. O.F. D.O.

Figure 5.4 Tank Case A State Transition Diagram

Dynamic Simulation Model 140

Thus the three possible initiating events are unit one or unit two failing

closed, or unit three failing open as shown in Figure 5.4. Since the unit

which fails first is only dependent on the failure rates of the three units,

it seems intuitively clear that the probability of each individual unit being

the first to fail is given simply by the ratio of the failure rate for that

unit divided by the sum of the failure rates for all three units.

To show this more formally, consider the system composed of only the

first four states of Figure 5.2, states 0, 1, 2, and 3. The four Markov

equations for this system are:

dP (5.1)

d+ A2 + '3] PO

dP1 _
d1 - A P (5.2)

dP 2 A P (5.3)

dt 2P0

dP 3 P (5.4)

dt 3P0

Noting that at time t-0.0 the system is initially in state 0 giving

P0(0)-l.0, equation 5.1 can be solved to give:

P0 (t) = exp[-[AI + A2 + A3]t] (5.5)

Substituting this result into equation 5.2 gives:

dP1 exp[A + A + A (5.6)

-- A , 1 1 2 3) t] ||

* Dynamic Simulation Model 141

which can be solved to yield:

SP() = + A + A exp 1-[A\1+ A 2 + A3] t] + C, (5.7)

2 1 1

where C since P (0) = 0.0.
[A 1 + ' 2 +/\31

The equation for state 1 can therefore be written:

P Wt = 1] 1 - exp AL' + A~ + A]t]} 5.8)

Using the same solution approach for states 2 and 3 it Is found:

P() W A { 1 -exp -A+ A+ /\3]tll (5.9)

P(t W 2 1 exp -L A + A+ A\]] (5.10)

* Solving equations 5.8, 5.9, and 5.10 for t sufficiently large, it is clear

that:
A1

P = A1 (5.11)

PA 2 (5.12)

P = A 3 (5.13)

Using these results it is found that unit three will fail first 43% of the

time, unit two 34%, and unit one 23% of the time.

The initial failure of unit one is the easiest case to consider since

it will always lead eventually to a tank overflow condition, regardless of

the relative flow rates provided by the three units. Unit one failing closed

causes the fluid level to rise until it passes into control region number

three, at which time unit two is shut off. The tank remains in this

---0----

O Dynamic Simulation Model 142

condition until either unit two or unit three fails open, either of which

will lead directly to a tank overflow condition.

The initial failure of unit two poses a more interesting problem. With

unit two failing closed, the fluid level will drop until it reaches control

region number one. Then unit one is closed and unit three is opened. This

causes the fluid level to rise until the fluid level is in control region two

again, at which time unit one is opened and unit three is closed. Thus the

fluid level will continue to oscillate about the low level set point of -1

meters with units one and three being alternately turned on and off. The

continuous routine in SIMSCRIPT uses a finite but variable time step, the

minimum and maximum of which must be specified by the programer. For both

cases considered, the minimum and maximum time steps were both set equal to

approximately one hour, therefore for this case the level of the tank will

fluctuate between -0.4 meters and -1.6 meters, spending equal time in each

of the two control regions (one and two). This is true since while the level

is rising, the rate of increase is 0.01 meters per minute, and while the

level is falling the rate of level change is also 0.01 meters per minute.

Fluctuation occurs between the same two points since time steps were forced

to be constant at one hour intervals.

From this state there are four possible events which can occur. While

the fluid level is rising, unit one can fail open or unit three can fail

closed, or while the fluid level is decreasing unit one can fail closed or

unit three can fail open. It is clear that if either unit fails while the

level is rising the flow rates in and out of the tank will then be equal and

the fluid level will stop changing until the failure of the third level

control unit. This third failure will lead directly to the tank running dry.

If one of the two control units fails while the tank level is dropping

Dynamic Simulation Model 143

then, again, the tank fluid level will cease to change until the failure of

the third unit. This time, the third unit failing will lead directly to

overflow of the tank. Since the tank spends an equal time in the rising and

falling level states, it is equally likely that the tank will fail in an

overflow or diyout s.ate. Thus fur the case of unit two beLong tihe initial

failure event, there is a 50% probability that the tank will fail in each of

its two failure conditions.

For the case of unit three failing first, the solution is as easy as

for unit one failing first. When unit three fails open the fluid level will

begin to rise until the level has reached control region number three at

which time unit two will be closed. Now with both units one and three open

the fluid level will hold constant at 1 meter. The next failure event,

either unit one failing closed or unit two failing open, will lead directly

to a tank overflow condition. Thus for all scenarios where unit three fails

first, .the tank will fail by overflow.

From the above discussion it is evident that all unit one initial

failures, all unit three initial failures, and half of the unit two initial

failures will eventually lead to an overflow condition. Thus using the

values quoted above for the probability that each of the three units will

fail first, it is found that the probability that the tank will fail by

overflow is:

0.23 + 0.43 + (0.5 * 0.34) - 0.83

The tank will fail by overflowing approximately 83% of the time and fail by

running dry the other 17% of the time.

It is important to note that although the above method simplifies the

problem so that it may be solved with Markov chains without even considering

the continuously variable tank fluid level, this method is only an

* Dynamic Simulation Model 144

approximation and is as good as the assumption that two failures do not occur

within a 3.5 hour time period. This, of course, will not be the case for all

continuous variable process control problems. In this example problem the

results obtained using the approximation agree well with the simulation

results, but several possible failure sequences which will occur with low

probability are ignored. For example, consider the case of failure of both

units two and three within 1.5 hours of each other. This will leave the

fluid level essentially unchanged or, at least, still in control region

number two. The net flow rate from the tank is still zero so the tank will

remain in this condition until unit one fails, at which time the tank will

overflow. If it is considered that unit three fails just prior to unit two,

then the result is consistent with the approximate analysis. However if unit

two failed first, then the approximate method predicts that half the cases

will experience system failure by overflow and half will be by dryout. This

is obviously not the case for the dual failure example and the approximate

solution will be slightly in error. Other "simultaneous" failures lead to

similar conclusions.

5.4.2 Analysis of Case F

For Case F the problem becomes much more complicated. The initial

failure probabilities remain unchanged from Case A, but some of the sequences

of events after initial failure change. One part that remains the same,

however, is the scenario following initial failure of unit number one. Since

unit one is the only way fluid can be removed from the tank, once it has

failed closed the tank is guaranteed to fail by overflow. Thus as in Case

A, if unit one fails first, all scenarios lead to overflow. The time to

overflow, however, could be different due to the different flow rate from

unit three.

0

Dynamic Simulation Model 145

If unit two fails first, the tank level drops to the low set point and

begins to oscillate above and below this mark as units one and three are

opened and closed (as in Case A). However, the amount of time spent in each

control region will be different. When the fluid level is rising, unit one

is closed and unit three is open, thus the level is changing at the rate of

0.005 meters per minute. When the level is falling, unit one is open and

unit three is closed, thus the level is changing at 0.01 meters per minute.

Define the flow rates from each of the three units as il, k2, and x3

respectively. For Case F the normal values are, x1-0.01, x2-0.01, and

x3- 0.005 meters per minute. Since unit two has failed closed, then x2-0.0.

Define the net flow rate as et, then while the water level is in control

region one (and unit one os closed), x.t is given by:

x.et - x3 - 0.005

While the water level is in control region two (and unit three is closed),

x. t is given by:

n- - - -0.01

Therefore, if the tank level is considered to vary between the same two

levels, the tank must spend twice as much time in the control region one

(with unit three open and one closed), than in the control region two (with

one open and three closed). This will reflect in the failure scenarios.

If while the tank level is increasing, either unit fails, then the tank

will immediately run dry. This is the same result as for Case A except that

Case A would not experience dryout until all three units have failed. If

while the tank level is decreasing, unit one fails, then the tank level will

hold constant until unit three fails open. Then the tank will overflow.

This sequence is the same as for Case A, however overflow will occur a few

hours later due to the slower flow rate from unit three.

* Dynamic Simulation Model 146

The fourth possible failure sequence resulting from the initial failure

of unit two is entirely different. If unit three fails while the tank level

is decreasing, then the level will continue to decrease until the level

reaches control region one, since the flow through unit three is half the

value of the flow through unit one. Once in control region one, unit one is

closed and the level wiil risa oecause of the flow from failed unit thrCe.

Once the level is again in control region two, unit one will be opened.

Thus the level oscillates about the -1 meter level with equal time spent

while the tank level is risIng and falling due to the fact that the flow rate

from unit one is exactly twice that from unit three. Since unit two has

failed closed and unit three has failed open, x2 - 0.0 and x3 - 0.005. While

the water level is in control region one, unit one is closed; x,,t is given

by:

0t - -3 - 0.005

While the water level is in control region two, unit one is open thus xo t

is given by:

•- 3 - 0.005 - 0.01 - -0.005

The water level rises and falls at equal rates.

From this condition, unit one can either fail open or closed depending

on whether it fails while the tank level is rising or falling. These

failures occur with equal probability. Therefore, once units two and three

have failed there is an equal chance that the tank will run dry or overflow.

Summarizing the possible sequences following failure of unit two it is

seen that the probability of subsequent failure of unit one or three is equal

to the ratio of their failure rates to the sum of the failure rates. Thus

there is a 65% chance that the next failure will be of unit three and a 35%

chance that the next failure will be of unit one. Of these percentages, two

0

Dynamic Simulation Model 147

thirds of the unit one failures will be unit one failing open, which leads

directly to dryout, and the other one third of the unit one failures lead to.

eventual tank overflow. For the unit three failure cases, two thirds will

be unit three failing closed, while the fluid level is rising, and this leads

to the tank failing by dryout. The other one third lead to oscillation in

the fluid level with unit one opening and closing, thus 50% will lead to

eventual system overflow and 50% will lead to system dryout. Evaluating the

probabilities of the scenarios initiated by the failure of unit two, it is

found that 77% lead to tank dryout while 23% lead to tank overflow. Figure

5.5 shows the state transition diagram for the Case F tank problem.

In Case F it is also no longer true that the initial failure of unit

three will eventually lead to tank overflow. To see this, the scenarios

associated with the initial failure of unit three are analyzed. Following

failure of unit three the tank level rises into control region three and then

unit two is closed. Since the flow rate from unit one is greater than the

flow rate of unit three, the level drops into control region two, at which

point unit two is turned back on. Thus the fluid level oscillates about the

+1 meter level with unit two being opened and closed. While unit two is on,

the net flow rate into the tank is 0.005 meters per minute, and while unit

two is off the flow rate out of the tank is 0.005 meters per minute, thus if

the tank level is assumed to oscillate between the same two levels, the

system spends equal time with unit two open or closed.

The next failure of either unit one or two will again be in proportion

to the failure rates associated with each unit. Using these values it is

found that subsequent to failure of unit three, there is a 41% chance that

the next failure will be of unit one and a 59% chance that the next failure

will be of unit two. If unit one fails, it closes, thus the tank will go

Dynamic Simulation Model 148

immediately to the overflow condition. Since unit two spends fifty percent

of its time open and fifty percent of its time closed, it has an equal

probability of failing either closed or open.

If while the tank level is decreasing, unit two fails on, the tank will

go directly to an overflow state. If, however, unit two fails closed while

the tank level is increasing, then the tank level will fall until it is in

control region one, at which time unit one will be closed. Then the level

will rise due to flow from unit three until the level is in control region

two, when unit one will be opened again. Thus the level oscillates about the

-1 meter level with unit one opening and closing.

The flow rate when fluid is leaving the tank is the same as the flow

rate when the fluid level is rising, therefore unit one spends an equal

amount of time open and closed. If unit one fails closed while it is open.

then the tank will overflow. If unit one fails open while it is closed, then

the tank will run dry. The latter case was not possible in Case A.

Table 5.3

Case A Failure Sequence Summary0
Failure Seauence Probability Result
#1 closed, #2 open 0.10 overflow
#1 closed, #3 open 0.13 overflow
#2 closed, #1 closed, #3 open 0.06 overflow
#2 closed, #1 open, #3 closed 0.06 dryout

* #2 closed, #3 open, #1 closed 0.11 overflow
#2 closed, #3 closed, #1 open 0.11 dryout
#3 open, #1 closed 0.17 overflow
#3 open, #2 open 0.25 overflow

Summarizing the scenarios following the initial failure of unit three

it is seen Lijat all but one of the situations leads to a tank overflow

condition. If unit one fails second, then overflow is certain to occur while

if unit two fails second only three quarters of the time will overflow occur.

. Dynamic Simulation Model 149

Evaluating numerically, following the initial failure of unit number three,

there is a 85% chance that the tank will fail by overflow and only a 15%

chance that the tank will run dry.

Table 5.4

Case F Failure Sequence Summary
Failure Sequence Probability Result
#i closed #2 open 0.i0 overflow
#1 closed, #3 open 0.13 overflow
#2 closed, #1 open 0.08 dryout

#2 closed, #1 closed, #3 open 0.04 overflow
* #2 closed, #3 open, #1 closed 0.04 overflow

#2 closed, #3 open, #1 open 0.04 dryout
#2 closed, #3 closed, #1 open 0.15 dryout
#3 open, #1 closed 0.17 overflow
#3 open, #2 open 0.13 overflow
#3 open, #2 closed, #1 open 0.06 dryout

* #3 open, #2 closed, #1 closed 0.06 overflow

Compiling the results of all initial failure events and evaluating the

numerical results it is found that for Case F, the probability that the tank

* will fail by running dry is 0.30 and the probability that the tank will fail

by overflowing is 0.70. Thus in Case F the tank is more likely to fail by

running dry than in Case A due to the decreased flow rate from unit three.

* Table 5.3 summarizes the possible failure sequences for Case A, their

probability of occurrence, and the end result. Table 5.4 summarizes the same

results for Case F.

* 5.4.3 Simulation Analysis

The results obtained for the asymptotic failure probabilities agree

well with the simulation results, as shall be seen, and Case A coincides with

* the results presented by Aldemir in reference A-1. For Case F, however,

results from the simulation method agree with results from the simplified

Markov model, but not as closely with Aldemir's predictions. This is due to

the fact that the problem treated in this work considers the failure of

Dynamic Simulation Model 150

components and Aldemir considers failure of the control system for the

components. Thus there will be different failure possibilities between the

two approaches.

From the above initiating event analysis, and making the assumption

that the time required for the fluid 'evel to transit between control regions

is negligible, it is possible to construct Markov chains to approximate the

time dependent behavior of the system. Figure 5.4 shows the Markov state

transition diagram for Case A and indicates that sixteen states are required.

Figure 5.5 shows the state transition diagram for Case F, which requires

nineteen states. Table 5.5 shows the states used for Case A and their

corresponding definition. States 11 and 13 correspond to tank dryout while

states 4, 5, 10, 12, 14, and 15 correspond to tank overflow. From the states

in this table the Markov equations are written using the failure rates for

each control unit. The Markov equations are shown in Table 5.6.

Table 5.5

Markov States for Tank Case A
STATE FAILURE DESCRIPTION
0 All units good
1 Unit 1 failed closed
2 Unit 2 failed closed
3 Unit 3 failed open
4 Unit 1 failed closed then Unit 2 failed open (Overflow)
5 Unit 1 failed elosed then Unit 3 failed open (Overflow)
6 Unit 2 failed closed then Unit I failed closed
7 Unit 2 failed closed then Unit 1 failed open
8 Unit 2 failed closed then Unit 3 failed open
9 Unit 2 failed closed then Unit 3 failed closed
10 Unit 2 failed closed then Unit i failed closed then

Unit 3 failed open (Overflow)
11 Unit 2 failed closed then Unit 1 failed open then

Unit 3 failed closed (Dryout)
12 Unit 2 failed closed then Unit 3 failed open then

Unit 1 failed closed (Overflow)
13 Unit 2 failed closed then Unit 3 failed closed then

Unit I failed open (Dryout)
14 Unit 3 failed open then Unit 1 failed closed (Overflow)
15 Unit 3 failed open then Unit 2 failed open (Overflow)

*Dynamic Simulation Model 151

Tank Case F

00

2

0.F F.F 0.F..O. DO. .. O.F.

Figure 5.5 Tank Case F State Transition Diagram

Dynamic Simulation Model 152

Table 5.6

Markov Equations for Tank Case A

dP
0dt : - I 1 + 2 + 3) Po

dPAd= - ['A2 + \3] P1 + AIPodP1

-d = - IA 1 + A3] P2 + A1 Po

dP3

d= - I + A2] P2 + A1 Po
dP4

dt 2 1
dP 5 -

dt 3 1
dP 6 A3P + 0.5 A P2

dP8d - AP + 0.5 ,\ 2dP7 AP + 0.5 ,\3P2dP8 = -A P \P

dt 1 8 3P2
dP

9 9

dt = A31P79+05dP21 0 A P
dt 3 6

dP 11 A
dt A3 p7

dP1 4

dt '18
dP -

dt 1 p9
dP 14

dP 1 5

dt ' 2 3

* Dynamic Simulation Model 153

TANK PROBLEM

CASE A - DRYOUT
1.0 -

SIMULATION
- MARKOV

E--

0.8

0.6

0E-

0
0.4

0.2

0.0 I I

0 200 400 600 800 1000

TIME(hours)

Figure 5.6 Case A - Cumulative Dryout Probability

*Dynamic Simulation Model 154

TANK PROBLEM-v

CASE A -OVERFLOW

1.0-

S0.8-

0.6

0.4

0.2-

0 SIMULATION

0.0-. 20 400600MARIKOV

020060 800 1000

TIME (hours)

* Figlure 5.7 Case A -Cumulative Overflow Probability

Dynamic Simulation Model 155

The failure rates are defined in reference A-I as:

Unit 1: A1 = 5.2 * 10- 5 per minute

Unit 2: A2 = 7.6 * 10-5 per minute

Unit 3: A3 = 9.5 * 10-5 per minute

To solve these equations, a fourth order Runge-Kutta numerical

integration routine (obtained from ref. P-4) was used as in Chapter 4. The

time period of concern is from time zero up until approximately 1,000 hours.

The time dependent results for appropriate states were summed to obtain the

time dependent probability of system failure by overflow or by dryout.

The TA:;K program was run for a simulated time duration of 1,000 hours

and 1,000 Monte Carlo trials were performed. The results were then plotted

along with the Markov approximation for comparison. Figure 5.6 shows the

time dependent results for the tank running dry and Figure 5.7 shows the

results for the tank failing by overflow. Both of these figures indicate

good agreement between the simulation results and the Markov approximation.

The time dependent behavior is virtually identical and values differ by only

a few percent. Good agreement between the simulation results and the

simplified Markov model is expected since the time required for the tank.

level to change is small in comparison with the failure times associated with

the individual flow control units. A quantitative comparison of the

simulation and simplified Markov results with the numerical results provided

by Aldemir's dynamic Markov approach for Case A is shown in Figure 5.10.

The data for Aldemir's approach was provided in reference A-5, and is the

same as the results presented in reference A-i. The figure indicates that

the simplified Markov results agree almost exactly with Aldemir's predictions

and the simulation method provides results which are very similar to both.

Dynamic Simulation Model 156

For this case, the difference between the three methods is very small and

indicates that although the approach to the problem was different for each

method, the results were quite comparable.

For approximate analysis of Case F using the Markov technique, there

are nineteen states of interest. These states are listed in Table 5.7 below.

States 6, 12, 13, and 17 contribute to tank dryout while states 4, 5, 10,

14, 15, and 18 contribute to tank failure by overflow.

Table 5.7

Markov States for Tank Case F

STATE FAILURE DESCRIPTION

0 All units good
1 Unit 1 failed closed
2 Unit 2 failed closed
3 Unit 3 failed open
4 Unit I failed closed then Unit 2 failed open (Overflow)
5 Unit I failed closed then Unit 3 failed open (Overflow)
6 Unit 2 failed closed then Unit I failed open (Dryout)
7 Unit 2 failed closed then Unit 1 failed closed
8 Unit 2 failed closed then Unit 3 failed open
9 Unit 2 failed closed then Unit 3 failed closed
10 Unit 2 failed closed then Unit 1 failed closed then

Unit 3 failed open (Overflow)
11 Unit 2 failed closed then Unit 3 failed open then

Unit 1 failed closed (Overflow)
12 Unit 2 failed closed then Unit 3 failed open then

Unit 1 failed open (Dryout)
13 Unit 2 failed closed then Unit 3 failed closed then

Unit 1 failed open (Dryout)
14 Unit 3 failed open then Unit 1 failed closed (Overflow)
15 Unit 3 failed open then Unit 2 failed open (Overflow)
16 Unit 3 failed open then Unit 2 failed closed
17 Unit 3 failed open then Unit 2 failed closed then

Unit I failed open (Dryout)
18 Unit 3 failed open then Unit 2 failed closed then

Unit 1 failed closed (Overflow)

With the above definitions of states and the same definition of failure rates

as given for Case A, the Markov equations are obtained and shown in Table

5.8. Figure 5.5 shows the state transition diagram for these equations.

* Dynamic Simulation Model 157

Table 5.8

Markov Equations for Tank Case F

dPd - [\ + '\ + \3]P o

* dP1 =-[A2 + A3]?1 + AIPo
dP

2
-- 1 A + A3]P2 + AP OdP3 2 - A + A2 " + Ajo
dP

3

- = IAi + A + A1?0
dP4

dt 2 1
dP

5

= A3 7 +1 lP
dP6= [] A1 3

dPdt =_A P 2]3P

dP
7

A

dt - A37 12

SdP 8
1

d* -0.5PlP
=P =-A P +] A3?

dP
10* dt= A 3?p7

dP 11

dt = 0.5 A1P8
dP12

0

*dP
13dt A 1IP 9

dP14

dt A1 p3
dP15

d-- = 0.5 A\2P3
dP16

dt - 1 P16 + 0.5 '2 P3
dP17

* dt = 0 .5 ,1 16
dP18

dt = 0.5 '1 P16

0

* Dynamic Simulation Model 158

Again the fourth order Runge-Kutta numerical integration program (from

ref. P-4) was used to solve the equations and the time dependent results for

the appropriate states were added together to produce the time dependent

probability of tank failure due to overflow and due to dryout. The

FLOW.UPDATE routine of the TANK program was modified to reflect the change

in flow rate from unit three and then the program was run again using the

same input file as for Case A to generate the simulation results. The input

file is contained in Appendix D and an example output file is in Appendix E.

The program was run for a simulated period of 1,000 hours and as in Case A,

1,000 trials were used. Results of the simulation program are plotted in

Figures 5.8 and 5.9 along with the Markov predictions for comparison. The

results indicate reasonable agreement between the two methods.

Also of note concerning the TANK simulation program is that from the

test run to determine failures sequences, it was found that 13 of the 1,000

trials involved failure of two units during the same continuous process

integration time step. In other words, in the 1,000 trials, 13 times, the

time separating successive failures was one hour or less. Thus approximately

1.3 percent of the time the assumption made for the initiating event Markov

analysis is not valid.

Also of note for the simulation method is the computer time required

to complete the problem. Using an integration time step of one hour,

running the problem for a simulated time period of 1,000 hours, and

* performing 1,000 trials caused, the program to take two hours and fifty

minutes for the Case A problem. Using the same parameter with the Case F

problem, the test took four hours and forty-three minutes. The time for Case

* F was much longer because of the fact that in this case there were many more

instances where the level of the tank oscillated about either the low or the

Dynamic Simulation Model 159

TANK PROBLEM

CASE F -DRYQUT

1.0 - . 1 1 - .

ISIMULATION
-MARKOV

-0.8

0.6-

0.4

0.2-

0.0*
0 200 400 600 800 1000

TIME(hours)

Figure 5.8 case F -cumulative Drycut Probability

Dynamic Simulation Model 160

TANK PROBLEM

CASE F -OVERFLOW

1.0~

QQ 0.8-

S0.6-

o0.4-

0.2-

0 SIMULATION h
0.0AMARKOV

0 200 400 600 800 1000

TIME(hours)

Figure 5.9 Case P -cumulative overflow Probability

* Dynamic Simulation Model 161

* TANK PROBLEM

CASE A
1.0 SIMULATION

* -MARKOV
...ALDEMIR

&--4 0.8

OVERFLOW

o0.6

-0.4-

0

0 200 400 600 800 1000

0 TIME(hours)

* Figure 5.10 comparison With Aldemir's Results for Case A

*Dynamic Simulation Model 162

* TANK PROBLEM

CASE F
1.0- I _ SIMULATION

* -MARKOV
.. ALDEMIR

E-0.8-

0.4

DRYQUT

D 0.2-

0 200 400 600 800 1000

* TIME(hours)

Figure 5.11 Comparison With Aldemir's Results for Case F

Dynamic Simulation Model 163

high tank level set points. The time stated above is for runs on a COMPAQ

386 personnel computer and times on an IBM XT are estimated to be about six

times as long. Thus the time requirement for using this simulation method

may be prohibitive.

Although the problem solved in the simulation approach was slightly

different than the one solved by Aldemir, results are compared in Figure

5.11. It is seen that the simplified Markov model now has an observable

error due to the assumptions made in its development. The simulation

results, however still show reasonable agreement with Aldemir's predictions

using the dynamic Markov model. Note that the data plotted for Aldemir's

model are obtained from reference A-5 and are corrected versions of the data

presented in reference A-I.

Certain improvements may be possible to improve the computer time

required. One of these, is increasing the time of the integration time step

used by the continuous process routine. Another is to more efficiently code

the portionz of the model which lead to oscillation of a component. Based

on the difference in time required for Case A and Case F, this improvement

alone may reduce solution time by 75% or more. Other techniques of

optimizing the computer code may also certainly be possible as the code was

written to be transparent, not necessarily efficient. It is evident that the

continuous simulation routine is a valuable tool, however improvements can

be made to increase the accuracy of results and to reduce the amount of

computer time required.

5.6 Chapter Summary

In this chapter the use of continuous simulation methods was explored

for use in analyzing the reliability of complex process control systems. The

specific problem investigated was the tank level control problem addressed

Dynamic Simulation Model 164

by Aldemir in reference A-1. The simulation solution proposed was a modified

version of the DYMCAM program discussed in previous chapters. This new

program, called TANK, made use of the continuous capability available in the

SIMSCRIPT 11.5 simulation language.

The tank level control problem addressed by Aldemir was discussed in

detail to provide insight into the exact nature of a simulation problem. The

Case A and Case F scenarios wer- explored and all possible failure sequences

were identified. An assumption was made concerning the time between failure

events which allowed for an approximate solution to be developed against

which the results of the simulation approach could be compared.

In the third section of the chapter, the modifications made to create

the TANK program were described. For the most part, the DYMCAM program was

left intact with only minor changes being made to a few lines of the

SIMSCRIPT code. Several routines were added to define the continuous

variable to be used in the simulation. These new routines include a Tank

process which models the fluid level as a continuous variable, and monitors

the level to determine the control region the system is in, and based on this

information, causes the opening and closing of control valves. This type of

dynamic problem is not treated by most reliability analysis techniques.

Once the program has been explained, the approximate Markov method is

described in detail. The Markov states used for both Case A and Case F are

listed in Tables 5.5 and 5.6 respectively and the Markov equations used are

listed. These equations were solved using a fourth order Runge-Kutta

numerical integration technique and the resulting time dependent system state

information manipulated to provide a time dependent estimate of the

probability of the tank failing by overflow or by dryout.

The TANK simulation program was run for a simulated time period of

* Dynamic Simulation Model 165

1,000 hours and for 1,000 Monte Carlo trials to provide the simulation

estimate to the tank level control problem. These results were plotted with

the results from the approximate Markov chain approach for comparison. It

was seen that both methods give similar results for the probability of tank

failure by overflow and dryout for both Case A and Case F. The results for

Cases A and F also compare well with the results given by Aldemir in

reference A-5.

The ccmputer time requirements for running the simulation program on

a personnel computer were quite large. This is due in large part to the

presence of the oscillation of the fluid level about the upper or lower tank

level set points. To reduce computer time requirements, it is possible to

revise the code to reflect a more efficient program, and the integration time

step can be increased. To increase the accuracy of the results, a larger

number of trials must be performed. Since the time required is directly

related to the number of trials performed, variance reduction techniques will

certainly be necessary. The TANK program demonstrated the capability of

using a continuous Monte Carlo simulation technique to solve complex process

control system reliability analysis problems with satisfactory approximate

results.

0

0 Dynamic Simulation Model 166

Chapter 6

Summary and Conclusions

6.1 Discussion of Methods

To evaluate the availability of a system there are two basic types of

approaches. These are static and dynamic methods. Under the heading of

static methods, the most well known technique is the fault tree. This method

has seen extensive use in reliability analysis and is a valuable tool for

calculating average system reliability. Another static method is the GO

methodology. This is a computer method which uses inductive logic to achieve

reliability analysis results. It's major advantage over the more widely used

fault tree method is that it models individual system components and

therefore provides a model which is easily reviewable and which can be

modified easily to analyze slight variations on the original analysis

problem. Both of these methods are good for determining average reliability

information, but neither can be easily used to solve dynami" analysis

problems.

Many methods exist for solving dynamic system availability problems.

One of the most commonly used is Markovian analysis. This method can provide

exact analytical continuous-time descriptions of systems which can be modeled

by a discrete state space. The major drawback of the technique, are the size

of the state space when complex systems are to be considered, and that only

exponentially distributed failure and repair time distributions can be used.

A second dynamic analysis method is the event tree. This method

provides modelling of the sequence of events which can lead to a designated

outcome. The method provides an inductive means of calculating the

* reliability of a system where initiating faults can lead to unfavorable

outcomes. The method does not explicitly model repair and failure cycles of

S mm man n n •| lnu m m

Dynamic Simulation Model 167

components and it can not be used to evaluate systems which have loops in

system operation which may the analysis to return back to a previous node in

the event tree a random number of times.

Digraph techniques provide a means of handling systems with continuous

process variables. The method is ideally suited to evaluating process

control systems in which the state of components may depend on the value of

a continuously varying signal. The results of a digraph analysis provide a

listing of disturbances which can lead to undesirable performance of the

system being analyzed.

The GO-FLOW methodology is similar to GO, but it provides a dynamic

capability. Thus this technique model provides an easily constructable

reliability analysis model which can de used to evaluate dynamic systems.

However, it can only be used to solve for discrete state systems, and is not

directly useful in evaluating process control systems or any structure with

continuously variable signals and component states.

The most flexible method of availability analysis, is probably also the

least used. This is the method of simulation. Monte Carlo simulation

techniques provide a powerful alternative to solving complex system

reliability analysis problems. In many cases, simulation can be used to

solve problems to which there is no analytical solution. The method can be

used to evaluate any type of phased mission problem. Since the model is

frequently developed to fit only a particular problem or specific type of

* problem, often fewer assumptions or approximations are necessary and the

model can be made to accurately reflect actual system behavior.

Drawbacks of the Monte Carlo simulation method are that it only

• provides an estimate of the actual system reliability. The level of

uncertainty in the prediction will be a result of the number of Monte Carlo

S

Dynamic Simulation Model 168

trials performed and the behavior of the random number generator employed.

For better accuracy the number of trials can be increased, but this can lead

to a large computer time requirement. Typically, an analytical solution

method can produce results in a fraction of the time required for solution

by simulation techniques, provided an analytic solution to the problem

exists. However, significant time might also be involved in determining the

form of the analytical solution for the system.

In this work, a new Monte Carlo simulation model was developed for

evaluating the dynamic availability of complex systems. The DYMCAM program

is designed to be a general analysis tool with applicability to many types

of engineering systems. The SIMSCRIPT 11.5 language provides the capability

for all three major types of simulation approaches including event

scheduling, process interaction, and continuous simulation, thus providing

flexibility in program development. All three methods are used in the TANK

program.

The basic DYMCAM program is designed to provide a model which can

analyze the time-dependent availability of dynamic systems, is easy to

construct, and can be easily modified to incorporate additional features as

needed. The program structure allows for prediction of time-dependent system

unavailability information at any number of user specified time points

throughout the course of the simulated time period, and it also provides time

averaged unavailability information for the entire simulation time. It has

the capability to schedule any number of external events thus providing a

limitless phased mission capability. Five basic component types are

presently modeled, however further components could easily be added if

specific problem requirements call for increased modeling capabilities. Much

like the GO and GO-FLOW codes in this respect, DYMCAM should be easy to

Dynamic Simulation Model 169

employ in system evaluation since it is expected that ar input file can be

written to evaluate a system using the DYMCAM code directly from a schematic

of the system.

The TANK code is a modified version of DYMCAM designed to demonstrate

the capability for evaluating systems containing continuous variables. These

systems, such as process control systems, can be quite difficult to evaluate

using the analytical analysis tools available. The TANK code provides the

ability to model a continuously variable tank fluid level and it also

demonstrates how a simulation program can be used to model the occurrence of

events not scheduled before the start of the simulation. The DYMCAM and TANK

codes demonstrate that Monte Carlo computer simulation techniques can be

employed to solve a wide variety of system availability analysis problems.

6.2 Discussion of Results

The DYMCAM program was first tested on two very basic component

availability examples to demonstrate that the program does indeed provide

meaningful results. The results obtained are accurate and the variance

acceptable for the number of trials performed. The two examples consisted

of a single component with exponentially distributed repair and failure

distributions and a three state component possessing, in addition to these

two states, an exponentially distributed repair delay state. In both cases

the results agreed well with analytic predictions.

The second case, involving the three state device, demonstrated a minor

* capability of the rather powerful DYMCAM subroutine called the

Repair.Supervisor. This subroutine can be used to cause various types of

repair delays and even to control which components are repaired and when.

* Repair resources can even be limited if this is necessary for analysis of

certain systems.

Dynamic Simulation Model 170

The third example demonstrated solution of a simple two-out-of-three

system. Success occurs if two of three parallel aligned pumps are operating

and flow is being produced at the outlet valve which all three pumps supply

pressure too. Results for this example again agreed well with Markov

predictions for the system and further demonstrated the capability of the

DYMCAM program to compute the availability of simple systems. The example

also identified the desireable capability of having signal process strength

incorporated into the model. Although not currently present, such

capabilities could easily be added.

The fourth test of the DYMCAM program demonstrated a simple phased

mission problem. The example used was one taken from reference M-2 and has

also been solved using the GO-FLOW methodology. Results obtained with the

DYMCAM program indicated the simulation approach gives availability

information equivalent to the values estimated by GO-FLOW. A sensitivity

analysis was also performed on this problem to verify the hypothesis that the

variance of results decreases with the increasing number of trials performed.

The TANK program was designed to demonstrate the continuous capability

of the SIMSCRIPT 11.5 simulation approach. Continuous variable modeling is

an important aspect of simulation a simulation approach, since few analytical

methods can treat such systems adequately. Aldemir proposes a discrete

state-space continuous time solution method with probabilistic system

behavior simulated by Markov chains in reference A-1. Also in this reference

is the specific tank example process control problem addressed in this work.

Using the TANK code, simulation solutions for the unavailability of the

tank due to overflow and dryout were calculated for the Case A and Case F

scenarios of reference A-1. Results compared favorably with Aldemir's

solutions, despite the fact that the component states treated in the TANK

* Dynamic Simulation Model 171

model are somewhat different than the states assumed by Aldemir. A

simplified Markov chain solution was also proposed in this work for

comparison and the Markov results agreed within reasonable accuracy with the

simulation results obtained for both Case A and F. For Case A, the

simplified Markov solution provided results that agreed almost exactly with

Aldemir's solution, while for Case F the simulation results were in closer

agreement with Aldemir's solution than was the simplified Markov approach.

The TANK program demonstrated that simulation of complex process

control systems may provide a simple method of solution to a problem which

is not readily solved by analytic methods. Results appear to be accurate,

and the standard deviation of the results are related directly to the number

of trials performed.

Another important function demonstrated was the ease with which a

simulation approach can change the state of components based on the state of

a process variable or other components in the system, at any time point

during a simulated run. This is an important function not easily handled by

other reliability analysis techniques. By improving the DYMCAM program and

properly exploiting this capability it will be possible to analyze many

stochastic systems which were previously not easily quantifiable.

6.3 Strengths and Weaknesses

The DYMCAM dynamic simulation model demonstrated the capability of

simulation programs to solve dynamic reliability analysis problems. Values

of unavailability can be calculated for a system at any time point during the

simulation which the user chooses. In this respect, the program is equal in

capability to continuous Markov analysis procedures. Although failure times

are treated as exponentially distributed and repair times are Weibul]

distributed in the DYMCAM program, it is a simple matter to change the

* Dynamic Simulation Model 172

program to use any type of transition distributions.

DYMCAM can also be used to solve any manner of deterministic phased

mission problem. Through use of external events, components and signals may

be changed at will during the execution of the simulation. Although not

incorporated into the basic DYMCAM code, the TANK code example demonstrated

that it is even possible to simulate stochastic systems in which components

are required to change operating state at time points determined by system

operating characteristics. The TANK code also shows that Monte Carlo

simulation can be successfully used to solve continuous variable reliability

analysis problems such as process control systems.

The major drawback of these simulation techniques are that they are

only estimation tools and do not provide exact results as do analytical

methods. The accuracy of the estimate improves with the number of Monte

Carlo trials performed, however the number of trials necessary to

significantly reduce the variance of the estimate may be prohibitively large,

requiring unacceptable amounts of computer time. As computers become faster,

this may prove to be less of a problem, in which case, in theory, exact

results can be obtained by using infinitely many trials, provided the

simulation model of the system is an accurate one.

It should be noted that the computer run times discussed in conjunction

with the tests of this work should not be interpreted as meaning that

simulation methods must always require excessive amounts of time. First,

neither DYMCAM nor TANK were programmed for maximum efficiency, but rather

to be as transparent as possible to the user. In addition, conversations

with individuals from CACI indicate that the IBM/PC version of SIMSCRIPT 11.5

* does run very slowly. This is because the language was originally developed

for mainframe computers, and the PC adaptation uses an interpreter, rather

Dynamic Simulation Model 173

than a compiler. SIMSCRIPT 11.5 will run much faster on a mini-computer.

6.4 Conclusion and Recommendations

It has been shown that Monte Carlo simulation methods provide a

powerful tool for solving many types of complex system availability analysis

problems. This work introduces a program which can be used to solve a wide

variety of problems simply by entering an input file which accurately

describes the relationships between components in the system. Many large

complex systems have no adequate solution techniques, therefore advances in

simulation technology is essential for solving many reliability analysis

problems.

As is evident from the variance of the results and computer time

required to obtain them, many improvements in the method can be made.

Cleaner coding of the program may improve run time requirements to some

extent; however a more important area of concern should be ih, exploring

methods of variancea reduction. Incorporating such techniques may

significantly reduce the need to use many Monte Carlo trials and can,

therefore, reduce computer time requirements. Once run time has been

significantly reduced, more extensive testing of the program should be done

to better determine the limits of the simulation technique.

The program should also be modified to consider the strength of process

signals. Currently, signals are either on or off indicating only the

presence of a process, not the actual strength. If signal strength

capabilities were present then it would be an easy matter to determine, for

instance, how many pumps were feeding water to a valve simply by the strength

of the process signal from the valve.

Another area for future work is on the Repair. Supervisor routine. This

process could be expanded to provide limitless capabilities in managing

p Dynamic Simulation Model 174

repair resources available to a system. This routine could be used to

control the order and scheduled times of repair for individual components

based on any desireable scheduling scheme.

The DYMCAM dynamic simulation model demonstrates the basic capability

of Monte Carlo techniques to solve any manner of complex system reliability

analysis problems. In the future, as analysis of advanced engineering

systems is required, development and application of approaches such as this

will become desireable and even necessary since analytic techniques may not

be practical or possible. Future improvements of the DYMCAM program should

make it a valuable tool for computing availability of dynamic systems.

Dynamic Simulation Model 175

References

A-i T. Aldemir; "Computer-Assisted Markov Failure Modeling of Process
Control Systems," IEEE Transactions on Reliability, Vol. R-36, No. 1,
(April 1987).

A-2 T. Aldemir, "Quantifying Setpoint Drift Effects in the Failure Analysis
of Process Control Systems," Reliability Engineering & System Safety,
Vol. 24, No. 1, (1989).

A-3 R. N. Allan, Y. A. Jebril, A. Saboury, and J. Roman, "Monte Carlo
Simulation Applied to Power System Reliability Evaluation," in System
Simulation (10th Advances in Reliability Technology Symposium) Elsevier
Applied Science Publishing Company, Inc., New York, 1988.

A-4 G. E. Apostolakis, S. L. Salem, and J. S. Wu, "CAT: A Computer Code for
the Automated Construction of Fault Trees," NP-705 Electric Power
Research Institute, (1978).

A-5 T. Aldemir, personal communication to N. Siu, Massachusetts Institute
of Technology, April 10, 1989.

B-1 R. Billinton and M. Patwardhan, "A Modified GO Methodology for System
Availability Assessment," in Poster Session (10th Advances in
Reliability Technology Symposium) Elsevier Applied Science Publishing
Company, Inc., New York, 1988.

B-2 R. Billinton and R. N. Allan, Reliability Evaluation of Engineering
Systems: Concepts and Techniques, Plenum Press, New York, 1983.

B-3 A. Bendell, "New Methods in Reliability Analysis," in Reliability
Technology: Theory and Applications (European Reliability Conference
1986: Copenhagen, Denmark) Elsevier Science Publishing Company, Inc.,
New York, 1986.

B-4 J. Banks and J. S. Carson II, Discrete-Event System Simulation,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.

B-5 J. Banks and J. S. Carson II, "Process-interaction Simulation
Languages," Simulation, Vol. 44, No. 5, (May 1985).

C-1 CACI, SIMSCRIPT 11.5 Programming Language, CACI, Inc.-Federal, Los
Angeles, 1987.

C-2 CACI, PC SIMSCRIPT 11.5 Introduction and User's Manual, Third Edition,
CACI, Inc.-Federal, Los Angeles, 1987.

D-1 B. S. Dhillon, Systems Reliability. Maintainability and Management,
Petrocelli Books, Inc., New York, 1993.

D-2 B. S. Dhillon and S. N. Rayapati, "A Complex System Reliability
Evaluation Method," Reliability Engineering, Vol 16, No. 2, (1986).

* Dynamic Simulation Model 176

F-I A. M. Fayek, Introduction to Combined Discrete-Continuous Simulation
Using PC SIMSCRIPT 11.5, CACI, Inc.-Federal, Los Angeles, 1988.

* G-1 W. V. Gately and R. L. Williams, "GO Methodology - Overview," NP-765
Electric Power Research Institute, (1978).

G-2 J. N. P. Gray, "Continuous-Time Markov Methods in Solution of Practical
Reliability Problems," Reliability Engineering, Vol. 11, No. 4, (1985).

* G-3 R. Ghajar and R. Billinton, "A Monte Carlo Simulation Model fur the
Adequacy Evaluation of Generating Systems," Reliability Engineering
System Safety, Vol. 20, No. 3, (1988).

J-1 L. E. Johnson, "Dynamic and Steady-State Solutions for a General
Availability Model," IEEE Transactions on Reliability, Vol. R-34, No.

* 5, (December 1985).

J-2 K. S. Jeong, S. H. Chang, and T. W. Kim, "Development of the Dynamic
Fault Tree Using Markovian Process and Super Component," Reliability
Engineering, Vol. 19, No. 2 (1987).

* K-1 T. Kohda and E. J. Henley, "On Digraphs, Fault Trees, and Cut Sets,"
Reliability Engineering & System Safety, Vol. 20, No. 1, (1988).

K-2 H. Kumamoto, T. Tanaka, and K. Inoue, "A New Monte Carlo Method for
Evaluating System-Failure Probability," IEEE Transactions on
Reliability, Vol. R-36, No. 1, (April 1987).

L-1 N. Limnios, "A Note on the Computation of Markovian Systems,"
Reliability Engineering & System Safety, Vol. 23, No. 3, (1988).

L-2 E. E. Lewis and T. Zhuguo, "Monte Carlo Reliability Modeling by
Inhomogeneous Markov Processes," Reliability Engineering, Vol. 16, No.

• 4, (1986).

L-3 M. 0. Locks, "Recent Developments in Computing of System-Reliability,"
IEEE Transactions on Reliability, Vol. R-34, No. 5, (December 1985).

L-4 A. M. Law and C. S. Larmey, An Introduction to Simulation Using
* SIMSCRIPT 11.5, CACI, Inc.-Federal, Los Angeles, 1984.

M-1 N. J. McCormick, Reliability and Risk Analysis, Academic Press, Inc.,
Orlando, Florida, 1981.

M-2 T. Matsuoka and M. Kobayashi, "GO-FLOW: A New Reliability Analysis
Methodology," Nuclear Science and Engineering, Vol. 98, No. 1, (January
1988).

M-3 T. Matsuoka and M. Kobayashi, "The GO-FLOW Methodology: A Reliability
Analysis of the Emergency Core Cooling System of a Marine Reactor Under
Accident Conditions," Nuclear Technology, Vol. 84, No. 3, (March 1989).

* Dynamic Simulation Model 177

0-1 R. M. O'Keefe, "The Three-phase Approach: A Comment on 'Strategy-
related Characteristics of Discrete-event Languages and Models',"
Simulation, Vol. 47, No. 5, (November 1986).

P-i A. Pages and M. Gondran, System Reliability - Evaluation and Prediction
in Engineering, North Oxford Academic Publishers Ltd., 1986.

P-2 D. B. Parkinson, "Fast Availability Simulation," Reliability
Engineering, Vol. 18, No. 3, (1987).

P-3 I. A. Papazoglou and E. P. Gyftopoulos, "Markovian Reliability Analysis
Under Uncertainty with an Application on the Shutdown System of the
Clinch River Breeder Reactor," NUREG /CR-0405, September 1978.

P-4 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
* Numerical Recipes, Cambridge University Press, New York, 1986.

R-1 E. C. Russell, Building Simulation Models with SIMSCRIPT 11.5, CACI,
Inc.-Federal, Los Angeles, 1983.

S-1 J. W. Schmidt and R. E. Taylor, Simulation and Analysis of Industrial
• Systems, Irwin, Homewood, Illinois, 1970.

S-2 A. F. Seila, "SIMTOOLS: A Software Tool Kit for Discrete Event
Simulation in Pascal," Simulation, Vol. 50, No. 3, (March 1988).

W-1 WASH 1400, "An Assessment of Accident Risks in U.S. Commercial Nuclear
• Power Plants," Reactor Safety Study, WASH 14C0, U.S.A.E.C., 1974.

0

Dynamic Simulation Model 178

Appendix A

DYMCAK Input File Description

Figure A.1 shows an example listing of an input file for the DYMCAM

program. Line numbers are indicated to aid in describing the setup of an

input file for a specific program, since different problems will require

different numbers of input data file lines. This discussion should provide

all information necessary to create a file to solve any specific problem for

the desired system unavailability information. Any text editor can be used

to create the input file, and the file can be given any name acceptable by

DOS requirements.

Line 1 is the title line and can be up to 80 characters long. If the

title is less than 80 characters long, it will be necessary to enter spaces

to extend the line to the full length. The read statements in the Input

routine are formatted reads, and therefore, if 80 characters are not found

on the first line, the program will look on the next line for the remaining

characters of the title, thus misreading the desired input data contained in

later lines. Some text editors, such as K-EDIT, do not save the trailing

blank spaces and thus could cause a problem if attempts are made to use them

to create input files. One trick that can be used if the title is short, is

simply to enter spaces out to column 80 of line i, and then enter a character

in column 81. K-EDIT will save the entire line, but DYMCAM will only read

the first characters of the line, thus printing only the title which was

desired.

Line 2 contains the number of simulated hours for which the program is

to be run. The format is d(l0,2) which means the program is looking for a

decimal number with two digits after the decimal point, and that the number

will be found in the first ten columns of line 2. For this particular

* Dynamic Simulation Model 179

LINE NUMBER INFORMATION
1 Test Simulation Program
2 1000.00

* 3 0
4 1000
5 11
6 0
7 0.00
8 100.00

* 9 200.00
10 300.00
11 400.00
12 500.00
13 600.00
14 700.00

* 15 800.00
16 900.00
17 1000.00
18 2
19 BATTERY passive operating
20 0.1 0.0

* 21 1.0 1.0 0.0
22 system process 0
23 SWITCH process 1
24 SWITCH switch open 3
25 0.3 0.0
26 1.0 1.0 0.0

* 27 system command 0
28 system power 1
29 BATTERY process 0
30 system process 0
31 standby
32 1
33 3
34 100.00 0
35 1
36 system BATTERY process
37 1
38 500.00 0
39 1
40 system SWITCH command
41 -1
42 900.00 1
43 SWITCH
44 open
45 0

Figure A. 1

Example DYMCAM Input File

0

Dynamic Simulation Model 180

format specification it is not necessary to have the value right justified

in the ten column field of interest. The value can be entered left

justified, if desired, and the program will read all digits to the left of

the decimal point as an integer value and then read the next two digits

following the decimal and ignore any other characters which may be in the

first ten columns. It is critical only that the decimal appear somewhere in

the first 10 columns so that format specifications are satisfied. If the

decimal appears in columns 9 or 10, then the one or two digits following the

decimal for which values have not been assigned, will he recorded as being

zero. This is true for any num er read with a d(x,y) format. Regardless of

the value of y, as long as a decimal is somewhere in the x columns specified,

then y characters will be assigned following the decimal. If y characters

are present in the input field, then they will be entered, if not, then

zeroes will be entered for the remaining digits. For the example shown, the

input value of simulation time is 1000 hours.

Line 3 is an integer value as must be entered in column 10. The value

which may be entered is either a 0 or a 1. The 0 entry signifies that the

run is to be a normal run. The 1 entry indicates that the run will be a test

run to see if proper program operation is occurring. Entering a 1 will cause

all components to fail at their mean failure time (one over the failure rate)

and all repairs to occur at their mean repair time. Thus by entering a 1,

it is possible to check and make sure that all components are failing and

being repaired as expected. The example shown in Figure A.1 has a 0 entered

indicating the run will be a normal run.

Line 4 indicates the number of Monte Carlo trials to be performed. The

number is entered as an integer value and must be right justified so that the

right most character of the number is entered in column 10 of line 4. THe

* Dynamic Simulation Model 181

example shows a value of 1000 indicating that 1000 Monte Carlo trials are to

be performed.

Line 5 specifies the number of time points for which dynamic system

unavailability data is required. This number is also an integer value and

must also be right justified with the one's digit falling in column 10.

There is no requirement as to the number of time points to be entered. If

desired, a zero can be entered and no dynamic information will be calculated

for the system. For the example problem, 11 time points will be used for the

dynamic unavailability analysis.

Line 6 is an integer value referring to the type of time distribution

desired for the dynamic unavailability analysis. The integer number 0 1,

or 2 must be entered in column 10 of line 6. Entering a 0 indicates that the

next lines of the input file will contain the desired time points. For the

example of Figure A.1, a value of 0 is specified, indicating that the next

11 (number of time points specified in line 5) lines of the input line will

contain the time points of interest. If a 1 had been entered, then the 11

time points would have been chosen as uniformly distributed between time zero

and the value specified in line 2. The program automatically chooses zero

and the value of line 2 as two of its time points, thus the remaining 9

points for this example would be chosen uniformly distributed between the

beginning and end times. For this case, the points chosen would be the same

ones entered in lines 7 through 17, therefore this program feature allows for

simplification of the input file.

If a value of 2 is entered in column 10 of line 6, then the program

will choose values for the time points which are log distributed between the

zero time and the end of simulation time specified in line 2. As was the

case with entering a i, the time zero point and the end of simulation time

0

* Dynamic Simulation Model 182

are automatically chosen. The remaining N - 2 points are calculated by

taking the log of the line 2 value, dividing it by one less than the value

of line 5, and then taking the inverse log of integer multiples of this

result, for time points between the two end times of the distribution. This

feature may be useful for evaluating the unavailability of a system which is

suspected of having an exponentially distributed result. Since the time

required to run thp simulation program is directly related to the number of

time the program is interrupted to take another time dependent unavailability

sample, it is desireable to keep the number of time points specified in the

input file to a minimum, while still providing sufficient data to pr.operly

evaluate the dynamic behavior of the system.

Line 18 of the input file specifies the number of components contained

in the system. For the example the number of components is 2. This value

will always be an integer value and must be entered right justified with the

right most digit falling in column 10. For every component indicated by this

number, there will be a minimum of five line of data in the input file. For

the example of Figure A.1, the first component is described in lines 19

through 23 and the second component is described in lines 24 through 30.

Each component must have a first line entered in the format of lines

19 and 24. The first 10 columns are reserved for the components name. The

name can contain any characters desired, but must not contain spaces. It

need not be left or right justified. It need only be less than or equal to

10 characters in length. The SIMSCRIPT language distinguishes between small

and capital letters, therefor it is important that if capital letters are

used for component names, that this is done consistently every where a

* specific component name is mentioned. All other text, other than component

names, must be entered in lower case letters, since this is what the DYMCAM

0l

* Dynamic Simulation Model 183

program has been programed to recognize.

Columns 11 through 20 for the first line of each component must contain

the component type designation. This, as all text, need not be justified,

but must be in lower case letters. Columns 21 through 30 should contain the

components initial state upon execution of the simulation. This information

must also be in lower case letters. Also on this line, the number of input

and output signals used by the component should be specified. Any number of

input and output signals can be assigned to a given component, however, for

all components, at least one input and one output signal must exist. The

number of inputs is an integer value and must be right justified in the

column 31 to 35 field, while the number of output signals must be entered as

an integer value right justified in the 36 to 40 column field. Line 19 of

the example refers to a passive element named BATTERY which is initially in

standby at time zero and has one input and one output signal. Line 24

indicates a switch named SWITCH which is initially open and has three inputs

and one output signal.

The second line of each component data field (lines 20 and 25 of the

example) contains the failure data for the component. The first 10 columns

contain the demand failure probability. The format for reading this value

is d(10,5). As discussed earlier, this means that the data will be contained

in a field 10 columns wide, and may include five digits following the

decimal. If more than five digits are entered after the decimal, they will

be ignored. The second data field of this line is from column 11 to column

20. This will contain the failure rate, lambda, for the component. The

format for this value is also d(10,5). As stated above, neither of these

values need be justified in their data fields. It is only critical that a

decimal point be entered somewhere in the field. Line 20 of Figure A.1, for

Dynamic Simulation Model 184

example, indicates a value of 0.1 for the BATTERY demand failure probability.

This value was entered with only one decimal place, since only one decimal

was needed, regardless of the fact that the format specified five decimal

places can be entered. Likewise for the SWITCH in line 25, and the failure

rates for both components.

The third line for each component (lines 21 and 26) must contain the

repair information. Three data values are entered and each is read in the

d(lO,5) format. The first value is the alpha parameter for the Weibull

distribution and it must be found in columns I through 10. The second value

is the beta parameter for the Weibull repair distribution and must be entered

in columns 11 through. The third value is the probability the component is

repairable once it has failed. This number is entered in columns 21 through

30. If exponentially distributed repair is to be considered, this can be

accomplished by entering a 0 for the value of alpha, and treating beta as

being equal to the mean repair time for the component (one over mu, the

exponential repair rate). For cases when a I is entered in line 3 of the

input file, the mean time to repair is treated as being equal to the Weibull

parameter, .- ta, regardless of the value of he alpha parameter. For the

example shown, repair is not considered, thus the values entered in lines 21

and 26 do not have physical significance, except for the zeros, which simply

indicate that once the component fails, it stays failed since it is not

repairable.

For every signal in the system, a line like lines 22, 23, and 27

through 30 must be specified. Since signals must be associated with the

components they link, they will always be listed following the component.

The number of signals described following any component will equal the sum

of the number of input and output signals specified for the given component.

* Dynamic Simulation Model 185

For the example shown, the BATTERY has one input and one output, thus two

signals are specified. For the SWITCH, there are three inputs and one

output, thus four signals are specified. The input signals for a component

must always be specified first and the output components last. The order of

specifying several input or output files for a given component, however, is

not important as long as the above rule is obeyed. Every signal which does

not originate from, or terminate at the system level, must be contained in

two component listings. This is clearly evident because each signal must

have an origin and a destination. Thus if it does not come from or go to the

system, it must travel between two components of the system.

Information concerning signals must always begin in the column 11 to

20 field. The first 10 columns to provide ease in viewing the file. The

first field of the description (columns 11 to 20) attaches the signal to

another component. For input signals, this field contains the name of where

the signal came from (either the system or an other component), and for

output signals the data field contains the destination of the signal (either

the system or an other component). Thus each signal is tied between two

components.

The second data field for each component is contained in columns 21

through 30 and indicates the type of signal (either command, power, or

process). As with all text data fields, the data need not be justified. The

third piece of data concerning each signal, is it's strength at the start of

the simulation. For power and process signals the strength is 0 if power is

not available or the process variable is not present, and the strength is I

if power is available or the process variable exists. For command signals,

• a value of 0 indicaces no command, while a value of I indicates to open the

switch or valve (or start the active component). A value of -1 indicates to

0|

Dynamic Simulation Model 186

close the valve or switch (or to stop the active component). These values

are entered as integers and are right justified in column 35. For the

example of Figure A.1, the BATTERY has one input and one output signal. The

input is a process signal coming from the system and is initially off, while

the output signal is a process signal going to the SWITCH and is also

initially off. The SWITCH has three inputs and one output. Two of the

inputs are from the system and reflect the power and command signals to the

SWITCH. Initially the switch has power but no command signal. The other

input to the switch is the process signal which comes from the BATTERY. The

output signal is aa process signal which goes to the system.

Line 31 provides information about the initial state of the system.

The program does not calculate the system state until a time 0+ which is

slightly greater than time zero, thus to artificially set the system to its

desired initial operating state it is necessary to set it at the beginning

of the run. For the system to be available at time zero, the system status

is set to operating or standby. Thus the value entered for initial system

state is either operating, standby, or failed. This data is entered in the

first 10 columns of the input file line. Line 31 of the example indicates

the system initially starts in the standby condition.

The next required line in the input file is the system success

criteria. This is the number of output signals directed to the system which

must be on in order for the system to be considered available. It is entered

as an integer value and must be right justified in column 10 of the data

line. For the example, the value entered in line 32 is one, specifying that

at least one output signal to the system must be on in order for the system

to be available. For this example, there is only one output signal to the

system, the output process signal from the switch, thus the system is only

* Dynamic Simulation Model 187

available if the switch is closed and an output process signal is being

generated, i.e. the BATTERY must also be operating.

Next, the number of external events to be included in the problem

scenario must be entered. This value will be an integer and is read right

justified from column 10 of the data file line. This value may be zero if

the problem to be analyzed is not a phased mission one, and if this is the

case, this will be the last line of the input file. For the example of

Figure A.1, line 33 indicates that there are 3 external events for this

problem.

For each external event, at least four lines of data must be entered.

The first line contains the time at which the event is scheduled to occur.

This information is contained in columns 1 to 10 and is read in the d(10,2)

format. Following this, in columns 11 to 20, the number of components

effected by the external event are given. This is an integer value and must

be entered right justified in column 20. Every external event must affect

at least one component or signal, but not necessarily both, therefor this

value may often be 0 as it is in lines 34 and 38 of the example. If the

value is 1 or greater, then the next lines will list the components effected

by the external event. Each line, like line 43 of the example, simply lists

the name of the affected component. The name must be found in the first 10

columns of the data file line. For the example, the external event changes

the st j of the SWITCH. The program is written such that all components

• changed by a given external event, are affected in the same manner. Thus the

next data file line following the component names, gives the new state of

these components. For the example, the external event opens the SWITCH at

900.00 hours into the simulation. Thus line 44 contains the instruction to

open. This component change of state must be entered in the first 10 columns

Dynamic Simulation Model 188

of the data line.

The next line of an external event specifies the number of. signals

affected by the event. This will be an integer value and must be entered

right justified in column 10 of the data line. For the example of Figure

A.1, the third external event does not change any signals as is indicated by

the 0 in line 45. The first to external events change one signal each. This

is indicated in lines 35 and 39 of the example input file. If a signal is

changed, then two lines must be entered for each signal changed by the

external event. The first line contains the origin of the signal, the

destination of the signal, and the type of signal. These three data entries

are text information and are entered in columns 1 to 10, 11 to 20, and 21 to

30 respectively. The next input data line contains the new strength of the

signal. This will be an integer value and is entered right justified in

column 10 of the data file line. For the example of Figure A.1, the first

external event changes the process signal from the system to the BATTERY

(line 36). The new strength (line 37) specifies that the signal is to be

turned on so that the BATTERY may now supply current. The second external

event of the example effects the command signal from the system to the

SWITCH. It causes the command signal to change to -1 at the 500.00 hour time

point which will cause the switch to close, provided it does not experience

a demand failure. Line 40 of the example specifies the signal, while line

41 gives the new value.

With the current program structure, it is possible to change many

signals with a single external event, and to change each to a different

signal strength. These same signals may be changed again at a later time in

the simulation by another external event. Components, on the other hand, can

only be changed once by an external event. This means that if an external

Dynamic Simulation Model 189

event is used at the 500.00 hour time point to open a switch, the same switch

can not be closed with an external event at a later time in the simulation

(although it may have its input command signal changed). This is because of

the way external events were treated in development of this basic

demonstration program. It would be possible to modify the program to allow

multiple state changes of a given component, if such a capability were

desireable.

Also with the current structure, all components changed by P given

external event must be changed to the same new state. This is not such a

problem since any number of external events can be scheduled to occur at

exactly the same time. In fact, the motivating idea for the external event

was that each event would effect only a single component or type of

component. If it is desireable, the External Event routine could certainly

be modified to allow multiple component changes during a single external

event.

This appendix should supply all the information necessary for writing

input files for the DYMCAM program. Care must be taken to ensure that all

information is properly formatted. For further examples it input files,

Appendix D can be consulted which contains several input files used for the

various test runs performed in chapters four and five. Also note in Appendix

D that all data file lines (with the exception of the title line) contain

data only up through column 40. Since SIMSCRIPT will not look beyond this

point for any data, it is possible to use this "blank space" to include

comments concerning the input file data for future reference and ease of

understanding. This has been done for all test cases run.

Dynamic Simulation Model 190

Appendix B

DYXCAM Program Listing

Dynamic Simulation Model 191

1 preamble
2 It
3 '' RISK - Test program to simulate system behavior
4 It

5 '' 03/28/89
6 It
7 permanent entities
8
9 every component.record

10 has a component name,
11 a component type,
12 a numberinputs,
13 a number_outputs,
14 a response function,
15 an initial state,
16 a demand_failurefrequency,
17 a run failure frequency,
18 a repairprobability,
19 a repair function shape, and
20 a repair functionscale
21
22 every external.event.record
23 has an occurrencetime,
24 a numbercomponents,
25 a new state,
26 a number signals, and
27 a newstrength
28
29 define response function as a subprogram variable
30 define componentname, componenttype, initialstate,
31 and new state as text variables
32 define demand failure frequency, runfailure frequency,
33 repairjprobability, repair function shape,
34 and repair functionscale as real variables
35 define number-inputs, number outputs, number-components,
36 number-signals, and new-strength as integer variables
37
38 '' 2-d arrays associated with permanent entities.
39 I,

40 define input.name, output.name, input.signal.type,
41 output.signal.type, extevnt.component, extevnt.origin,
42 extevnt.destination, and extevnt.stype
43 as 2-dimensional text arrays
44 define input.signal.strength and output.signal.strength
45 as 2-dimensional integer arrays
46 define test as a 1-dimensional text array
47 define signal.status as a 1-dimensional integer array
48
49 processes include call.update, schedule.avail.samples,
50 schedule.external.events, repair.supervisor,
51 stop.tank, and stop.scenario ''TANK
52
53 every component
54 has a name,
55 a component.type,

Dynamic Simulation Model 192

56 a response.function,
57 an old.state,
58 a state,
59 a demand.failure.frequency,
60 a run.failure.frequency,
61 a repair.probability,
62 a repair.function.shape,
63 a repair.function.scale,
64 a failure.time,
65 a status,
66 and owns an input.sset and
67 an output.sset
68 and may belong to a system.cset,
69 a tank.input.cset, ''TANK
70 a tank.output.cset, ''TANK
71 and an extevnt.cset
72
73 every tank ''TANK
74 has a high.level, ''TANK
75 a low.level, ''TANK
76 a high.set, ''TANK
77 a low.set, ''TANK
78 a level, ''TANK
79 a flow.rate.in, ''TANK
80 a flow.rate.out, ''TANK
81 a net.flow.rate, ''TANK
82 and owns a tank.input.cset, ''TANK
83 a tank.output.cset, ''TANK
84 a tank.input.sset, and ''TANK
85 a tank.output.sset ''TANK
86 and belongs to a system.tset ''TANK
87
88 every external.event
89 has an occurrence.time,
90 a new.state,
91 a number.signals,
92 a signal.origin,
93 a signal.destination,
94 a signal.typee, and
95 a new.strength
96 and owns an extevnt.cset
97 and belongs to a system.eset
98
99 every availability

100 has a time.avail, and
101 a time.avail.data
102
103 define time avail as a 1-dimensional real array
104 define time.avail and time.avail.data as real variables
105 define tank.condition as an integer function ''TANK
106 define response.function as a subprogram variable
107 define name, component.type, old.state, state, new.state,
108 signal.origin, signal.destination, and signal.typee
109 as text variables
110 define demand.fLilure.frequency, run. failure.frequency,

* Dynamic Simulation Model 193

111 repair.probability, repair.function.shape,
112 repair.function.scale, failure.time, occurrence.time,
113 high.level, low.level, high.set, low.set, ''TANK

* 114 flow.rate.in, flow.rate.out, net.flow.rate, ''TANK
115 and number.signals as real variables
116 define status and new.strength as integer variables
117 define level as a continuous double variable ''TANK
118 ''
119 '' Later versions may define signals as processes (so time delays
120 '' can be built in).
121

10 122 temporary entities
123
124 every signal
125 has a signal.type,
126 an origin,
127 a destination,
128 an old.strength, and

* 129 a strength
130 and may belong to an output.sset,
131 an input.sset,
132 a tank.input.sset, ''TANK
133 a tank.output.sset, ''TANK
134 a system.boundary.sset,
135 a system.success.sset, and
136 a system.sset
137
138 define cptr, sptr, eptr, aptr, and tptr ''TANK
139 as 1-dimensional pointer arrays
140
141 definesignal.type, origin, and destination as text variables
142 define old.strength and strength as integer variables
143
144 '' System characteristics.

* 145
146 the system owns a system.boundary.sset,
147 a system.success.sset,
148 a system.cset,
149 a system.sset,
150 a system.eset, and
151 a system.tset ''TANK
152153 define failure.translation as a text function

154 define job.title, initial.system.state, and system.state
155 as text variables
156 define system.ind.var and simulation.time as real variables
157 define ntrial, system.success.criterion, ntimes,
158 distribution.type, run.type, and total.signal.count
159 as integer variables

• 160 define unavailability.dist as a 1-dimensional real array
161 define trial.unavail as a real variable
162
163 accumulate trial.availability as the mean of system.ind.var
164 tally average.unavailability as the mean,
165 variance.unavailability as the variance,

* Dynamic Simulation Model 194

166 maximum.unavailability as the maximum,
167 and minimum.unavailability as the minimum of
168 trial.unavail

* 169
170 define .off to mean 0
171 define .on to mean 1
172 define .no to mean 0
173 define .yes to mean 1
174 define .working to mean 1
175 define .resetting to mean 2
176 define .awaiting.repair to mean 3

* 177 define .under.repair to mean 4
178 define .not.repairable to mean 5
179 define .reset.run to mean 6
180
181 end ''preamble

*

Dynamic Simulation Model 195

1 main
2 define trial as an integer variable
3 1
4 ' Problem input
5 D,

6 call input
7 call run.initialize
8 call tank.initialize.run ''TANK
9 add .003 to simulation.time

10 for trial - 1 to ntrial
11 do

* 12 call trial.initialize
13 call tank.initialize.trial "TANK
14 activate a call.update now
15 activate a schedule.avail.samples now
16 activate a schedule.external.events now
17 activate a stop.tank in simulation.time hours "TANK
18 activate a stop.scenario in simulation.time hours
19 start simulation

* 20 let unavailability.dist(trial) - 1 - trial.availability
21 let trial.unavail = trial.availability ''TANK
22 let time.v - 0
23 reset totals of system.ind.var
24 loop
25
26 call run.output
27

• 28 end "main

0

* Dynamic Simulation Model 196

1 routine active given component
2 ''
3 '' Develops output signals for an active component
4 '' using explicit command signals. Assumes that the component
5 '' has one or more command signal inputs, power inputs, and
6 '' process inputs:
7 I,

8 "input
command --9 '' input power --- output process

10 '' input process --- _ I
* 11 ''

12 '' Condensed decision table:
13
14 '' Command Power Process Initial Final Process
15 '' Case Input Input Input State State Output
16 ' -

17 ' 1 - - - failed failed no
18 ' 2 - no - standby standby no
19 Of 3 stop yes - standby standby no
20 ' 4 none yes - standby standby no
21 ' 5 start yes no standby standby* no
22 ' failed no
23 ' 6 start yes yes standby standby* no
24 ' operating yes
25 ' 7 - no - operating standby no

* 26 I' 8 stop yes no operating failed no
27 ' standby no
28 ' 9 stop yes yes operating operating* yes
29 ' standby r.o
30 ' 10 none yes no operating failed no
31 ' 11 none yes yes operating operating yes
32 ' 12 start yes no operating failed no
33 ' 13 start yes yes operating operating yes

* 34 ' 14 - - - standby* standby* no
35 " 15 - no - operating* operating* no
36 ' 16 - yes no operating* failed no
37 ' 17 - yes yes operating* operating* yes
38
39 define rule as a saved 2-dimensional text array
40 define component as a pointer variable
41 define index.command, total.command, number.power, total.power,

• 42 number.process, total.process, output.strength, ruletype,
43 success, and j as integer variables
44 define later.case as a saved integer variable
45 "
46 O' Enter decision table.
47 Of
48 if later.case eq .no

* 49 reserve rule as 17 by 4
50 let rule(l,1) = "" let rule(l,2)
51 let rule(l,3) = "" let rule(l,4) = "failed"
52 let rule(2,1) = "" let rule(2,2) = "no"
53 let rule(2,3) - "" let rule(2,4) - "standby"
54 let rule(3,1) - "stop" let rule(3,2) - "yes"
55 let rule(j,Jj - ," let L ule(J,4) - "standby"

*Dynamic Simulation Model 197

56 let rule(4,l) - "none" let rule(4,2) = "yes"
57 let rule(4,3) - ""l let rule(4,4) - "standby"
58 let rule(5,I) - "start" let rule(5,2) - "yes"
59 let rule(5,3) = "no" let rule(5,4) = "standby"

*60 let rule(6,l) - "start" let rule(6,2) = "tyes"f
61 let rule(6,3) - "yes" let rule(6,4) - "standby"
62 let rule(7,l) - ""' let rule(7,2) - "no"
63 let rule(7,3) - "" let rule(7,4) - "operating"
64 let rule(8,1) = "stop" let rule(8,2) - "yes"
65 let rule(8,3) = "no" let rule(8,4) = "operating"
66 let rule(9,l) - "stop" let rule(9,2) - "yes"

*67 let rule(9,3) - "yes" let rule(9,4) - "operating"
68 let rule(l0,1) - "none" let rule(l0,2) W "1yes"
69 let rule(lO,3) - "no" let rule(l0,4) - "operating"
70 let rule(ll,l) = "none" let rule(1l,2) = "yes"
71 let rule(1l,3) = "yes" let rule(11,4) - "operating"
72 let rule(12,1) - "start" let rule(12,2) - "1yes"l
73 let rule(12,3) - "no" let rule(12,4) - "operating"
74 let rule(13,1) - "start" let rule(13,2) = "1yes"t

*75 let rule(13,3) - "yes" let rule(13,4) = "operating"
76 let rule(14,l) - "" let rule(14,2) - i
77 let rule(14,3) - "" let rule(14,4) - "standby*"
78 let rule(15,l) -" let rule(15,2) - "no"
79 let rule(15,3) - "" let rule(15,4) - "operating*"
80 let rule(16,l) - "" let rule(16,2) - "yes"
81 let rule(16,3) = "no" let rule(16,4) - "operating*"
82 let rule(17,l) - "" let rule(17,2) - "yes"

83 let rule(17,3) - "yes" let rule(17,4) - "operating"
84 let later.case = .yes
85 always
86
87 '' Determine input signal status. Assume that "start" and "stop"
88 '' commands cancel each other out (respective values of 1 and -1).
89
90 for every signal in input.sset(component)
91 do
92 if signal.type(signal) eq "process"
93 add 1 to total.process
94 if strength(signal) eq .on
95 add 1 to number.process
96 always
97 else
98 if signal.type(signal) eq "power"
99 add 1 to total.power

100 if strength(signal) eq .on
101 add 1 to nurnber.power
102 always
103 else
104 add 1 to total.command
105 add strength(signal) to index.comxnand

*106 always
107 always
108 loop
109
110 '' Develop test vector for comparison wit-h rules. Assume that.

Dynamic Simulation Model 198

111 '' a single process signal is sufficient, and that a single power
112 '' signal is sufficient (i.e., OR gates).
113
114 if index.command eq -1
115 let test(l) - "stop"
116 else
117 if index.command eq 0
118 let test(l) - "none"
119 else
120 let test(l) - "start"
121 always
122 always
123 if number.power ge 1
124 let test(2) = "yes"
125 else
126 let test(2) - "no"
127 always
128 if number.process ge 1
129 let test(3) = "yes"

* 130 else
131 let test(3) - "no"
132 always
133 let test(4) - state(component)
134 ''
135 '' Determine appropriate rule.
136
137 for ruletype = 1 to 17

* 138 do
139 for j = 1 to 4
140 do
141 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
142 go to 'next'
143 always
144 loop

• 145 go to 'found'
146 'next'
147 loop
148
149 '' Select rule.
150
151 'found'
152 select case ruletype

* 153
154 case 1, 16
155 let state(component) - "failed"
156 let output.strength = .no
157
158 case 2, 3, 4, 7
159 let state(component) - "standby"
160 let output.strength - .no

* 161
162 case 5
163 call demand.test giving component yielding success
164 if success eq .no
165 let state(component) - "standby*"

0

Dynamic Simulation Model
199

166 let output.strength = .no
167 else
168 let state(component) = "failed"
169 let output.strength = .no
170 always
171
172 case 6
173 call demand.test giving component yielding success
174 if success eq .no
175 let state(component) - "standby*"
176 let output.strength -. no
177 else
178 let state(component) = "operating"
179 let output.strength = .yes
180 always
181
182 case 8
183 call demand.test giving component yielding success
184 if success eq .no
185 let state(component) = "failed"
186 let output.strength - .no
187 else
188 let state(component) - "standby"
189 let output.strength - .no
190 always
191

* 192 case 9
193 call demand.test giving component yielding success
194 if success eq .no
195 let state(component) - "operating*"
196 let output.strength - .yes
197 else
198 let state(component) - "standby"
199 let output.strength - .no

* 200 always
201
202 case 10, 12
203 let state(component) - "failed"
204 let output.strength - .no

.205
206 case 11, 13
207 let state(component) - "operating"
208 let output.strength - .yes
209
210 case 14
211 let state(component) - "standby*"
212 let output.strength = .no
213
214 case 15

* 215 let state(component) - "operating*"
216 let output.strength = .no
217
218 case 17
219 let state(component) - "operating*"
220 let output.strength - .yes

0

Dynamic Simulation Model 200

221
222 default
223
224 '' Error messages can be put here if rule not matched.
225
226 endselect
227
228 '' Update output signals.
229
230 for every signal in output.sset(component)
231 let strength(signal) = output.strength

*0 232
233 return
234
235 end ''active

* Dynamic Simulation Model 201

1 process availability
2 1,
3 '' This process totals the sum of the system indicator
4 '' variable at the specified time points. At the completion
5 '' of all trials the totals are divided by the number of
6 '' trials to determine the time dependent system availability.
7
8 while time.v lt (simulation.time + 10)
9 do

10 suspend
11 add system.ind.var to time.avail.data(availability)

* 12 loop
13
14 suspend
15
16 end ''availability0.

* Dynamic Simulation Model 202

1 process call.update
2 ''
3 '' This should be a process to keep the process component
4 '' from destroying itself when it tries to call a system

* 5 ' update.
6
7 while time.v it .000004
8 do
9 wait .000005 hours

10 for every component in system.cset
11 do

* 12 resume the component
13 loop
14 for every tank in system.tset ''TANK
15 resume the tank ''TANK
16 wait .0005 hours
17 for i - 1 to dim.f(cptr(*))
1 do
19 if component.type(cptr(i)) eq "active"

* 20 or component.type(cptrti)) eq "passive"
21 if state(cptr(i)) ne "operating"
22 interrupt the component called cptr(i)
23 always
24 always
25 loop
26 loop
27 call system.update

* 28
29 return
30
31 end ''call.update

Dynamic Simulation Model 203

1 routine check.valve given component
2 it
3 ' Develops output signals for a check valve.
4 'I5 ° I,
6 '' input process output process
7 I,
8
9 '' Condensed decision table:

10 ''
11 '' Process Initial Final Process
12 '' Case Input State State Output
13 ''-------
14 '' 1 - failed closed fa'led closed no
15 '' 2 no closed closed no
16 '' 3 yes closed failedclosed no
17 '' open yes
18 '" 4 no failedopen failedopen no
19 '' 5 yes failedopen failed open yes
20 '' 6 no open failed open no
21 '' closed no
22 '' yes open open yes
23
24 define rule as a saved 2-dimensional text array
25 define component as a pointer variable
26 define number.process, total.process, output.strength,
27 ruletype, success and j as integer variables
28 define later.case as a saved integer variable
29 ''
30 '' Enter decision table.
31 Of
32 if later.case eq .no
33 reserve rule as 7 by 2
34 let rule(l,l) = "" let rule(l,2) - "failed closed"
35 let rule(2,1) - "no" let rule(2,2) - "closed"
36 let rule(3,1) - "yes" let rule(3,2) - "closed"
37 let rule(4,l) - "no" let rule(4,2) - "failedopen"
38 let rule(5,1) - "yes" let rule(5,2) - "failedopen"
39 let rule(6,1) - "no" let rule(6,2) - "open"
40 let rule(7,1) - "yes" let rule(7,2) - "open"
41 let later.case = .yes
42 always
43 ''
44 '' Determine input signal status.
45
46 for every signal in input.sset(component)
47 do
48 if signal.type(signal) eq "process"
49 add 1 to total.process
50 if strength(signal) eq .on
51 add 1 to number.process
52 always
53 always
54 loop
55 If

Dynamic jimulation Model 204

56 '' Develop test vector for comparison with rules. Assume that
57 '' a single process signal is sufficient (i.e., an OR gate).
58 It
59 if number.process ge 1
60 let test(l) = "yes"
61 else
62 let test(l) = "no"
63 always
64 let test(2) = state(component)
65 It
66 '' Determine appropriate rule.
67
68 for ruletype - 1 to 7
69 do
70 for j = 1 to 2
71 do
72 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
73 go to 'next'
74 always
75 loop
76 go to 'found'
77 'next'
78 loop
79
80 '' Select rule.
81
82 'found'
83 select case ruletype
84
85 case 1
86 let state(component) - "failedclosed"
87 let output.strength = .no
88
89 case 2
90 let state(component) - "closed"
91 let output.strength - .no
92
93 case 3
94 call demand.test giving component yielding success
95 if success eq .no
96 let state(component) - "failed-closed"
97 let output.strength = .no
98 else
99 let state(component) = "open"
100 let output.strength = .yes
101 always
102
103 case 4
104 let state(component, = "failedopen"
105 let output.strength = .no
106
107 case 5
108 let state(component) = "failedopen"
109 let output.strength = .yes
110

Dynamic Simulation Model 205

i1 case 6
112 call demand.test giving component yielding success
113 if success eq .no
114 let state(component) - "failed-open"

* 115 let output.strength - .no
116 else
117 let state(component) = "closed"
118 let output.strength = .no
119 always
120
121 case 7
122 let state(component) - "open"
123 let output.strength - .yes
124
125 default
126
127 '' Error messages can be put here if rule not matched.
128
129 endselect

* •130
131 '' Update output signals.
132
133 for every signal in output.sset(component)
134 let strength(signal) - output.strength
135
136 return
137

* 138 end ''check.valve

0

*Dynamic Simulation Model 206

1 process component
2 J
3 It Tracks behavior of all components after initial demand (change).

*4 Of Includes repair. Uses exponential failure time model.
5 of

6 define mean.failure.time, default.time, el, and
7 e2 as real variables
8
9 'term'

10 suspend
11 while time.v lt (simulation.time + 10)

012 do
13 'reset'
14 let status(component) - .working
15 if run.failure.frequency(component) gt 0
16 let mean.failure.time -l./run.failure.frequaency(component)
17 if run.type eq 1
18 wait mean, failure.time hours

*19 go to 'repair'
20 otherwise
21 wait exponential.f(mean.failure.time,l) hours
22 'repair'
23 if status(component) eq .resetting
24 go to 'reset'
25 always
26 if status(component) eq .reset.run

*27 go to 'term'
28 always
29 if state(component) eq "open" or
30 state(component) eq "closed" or
31 state(component) eq "operating"
32 let old.state(component) - state(component)
33 let state(component) - failure.translation(component)
34 activate a call.update now
35 always
36 else

37 let default.time - simulation.time + 10.0
38 wait default.time hours
39 if status(componunt) eq .resetting
40 go to 'reset'
41 always
42 if status(component) eq .reset.run
43 go to 'term'
44 always
45 always
46 let status(component) - .awaiting.repair
47 let failure.time(component) = time.v
48 activate a repair.supervisor now
49 suspend
so5 if status(component) eqretru
51 go to 'term'
52 always
53 1
54 '' REPAIR
55

Dynamic Simulation Model
207

56 let status(component) = .under.repair
57 let el - repair.function.shape(component)
58 let e2 - repair.function.scale(component)
59 if run.type eq 1
60 wait e2 hours
61 go to 'good'
62 otherwise
63 wait weibull.f(el,e2,1) hours
64 'good'
65 if status(component) eq .reset.run
66 go to 'term'
67 always
68 let old.state(component) = state(component)
69 select case component.type(component)
70
71 case "active", "passive"
72 let state(component) - "standby"
73
74 case "switch"
75 let state(component) - "open"
76
77 case "valve", "check.valve"
78 let state(component) - "closed"
79
80 default
81 print 1 line thus
82 The component type was not matched in the repair routine.
83
84 endselect
85 activate a call.update now
86 loop
87
88 suspend
89
90 end ''component

Dynamic Simulation Model 208

1 routine demand.test given component yielding success
2
3 '' Determines if given component succeeds or fails on demand,
4 '' using the demand.failure.frequency for the component.
5
6 define component as a pointer variable
7 define success as an integer variable
8 if random. f(1) le demand.failure.frequency(component)
9 let success - .no

10 else
11 let success - .yes
12 always
13
14 return
15
16 end ''demand.test

Dynamic Simulation Model 209

1 process external.event
2 t
3 '' Schedules a change in the system (either to component status
4 '' or signal strength) occurrence.time hours into the simulation.
5 II

6 while time.v it (simulation.time + 10)
7 do
8 suspend
9 for every component in extevnt.cset(external.event)

10 do
11 let old.state(component) - state(component)
12 let state(component) = new.state(external.event)
13 loop
14
15 if number.signals(external.event) eq 1
16 for j - 1 to number.signals(external.event)
17 do
18 for every signal in system.sset
19 with origin(signal) eq signal.origin(external.event)
20 and destination(signal) eq
21 signal.destination(external.event)
22 and signal.type(signal) eq signal.typee(external.event)
23 find the first case
24 if found
25 let old.strength(signal) = strength(signal)
26 let strength(signal) = new.strength(external.event)
27 always

* 28 loop
29 else
30 if number.signals(external.event) ne 0
31 print 1 line thus
32 An external event was entered with more than one signal change.
33 always
34 always

* 35 call system.update
36 loop
37
38 suspend
39
40 end ''external.event

0

Dynamic Simulation Model
210

1 function failure.translation(component)
2 ,
3 '' Determines status of "failed" component.
4 I,

5 define component as an integer variable
6 define mode as a text variable
7
8 select case component.type(component)
9

10 case "active", "passive"
11 let mode = "failed"

* 12
13 case "check.valve", "valve", "switch"
14 if state(component) eq "open"
15 let mode - "failedclosed"
16 always
17 if state(component) eq "closed"
18 let mode - "failedopen"
19 always

• 20 if state(component) ne "open" and
21 state(component) ne "closed"
22 print 1 line thus
23 Failure translation didn't function properly!
24 always
25
26 default
27 print 1 line thus
28 Failure translation routine rule not matched!
29
30 endselect
31
32 return with mode
33
34 end ''failure.translation

Dynamic Simulation Model 211

1 routine input
2
3 '' Problem input routine.
4 I,
5 define infile and outfile as text variables
6
7 write as /, "Enter DOS input file name => ",+
8 read infile
9 write as /, "Enter DOS output file name =>

10 read outfile
11 open 7 for input, file name - infile
12 use 7 for input
13 open 8 for output, file name - outfile
14 use 8 for output
15 to
16 '' Title, general characteristics.
17 '"
18 read job.title as t 80, /
19 write job.title as t 80, /
20 read simulation.time as d(10,2), /
21 write simulation.time as d(10,2), /
22 read run.type as i 10, /
23 write run.type as i 10, /
24 read ntrial as i 10, /
25 write ntrial as i 10, /
26 read ntimes as i 10, /
27 write ntimes as i 10, /
28 read distribution.type as i 10, /
29 write distribution.type as i 10, /
30 reserve time avail(*) as ntimes
31 if distribution.type eq 0
32 for i - 1 to ntimes
33 do
34 read time avail(i) as d(10,2), /
35 write time avail(i) as d(10,2), /
36 loop
37 always
38 ''
39 '' Component characteristics.
40 1"
41 read n.component.record as i 10, /
42 write n.component.record as i 10, /
43 create every component.record
44 reserve input.name(*,*), output.name(*,*), input.signal.type(*,*),
45 output.signal.type(*,*), input.signal.strength(*,*), and
46 output.signal.strength(*,*) as n.component.record by *
47 for i - 1 to n.component.record
48 do
49 read componentname(i),
50 componenttype(i),
51 initial state(i),
52 numberinputs(i), and
53 number outputs (i)
54 as 3 t 10, 2 i 5, /
55 write component name(i),

*Dynamic Simulation Model 212

56 component type(i),
57 initial-state(i),
58 number inputs(i), and

*59 number-outputs(i)
60 as 3 t 10, 2 i 5,/
61 read demand-failure frequency(i) and
62 run-failure frequency(i)
63 as 2 d(10,5), /
64 write demand-failure_frequency(i) and
65 run failure frequency(i)
66 as 2 d(10,5), /
67 read repairjfunction-shape(i),
68 repair function scale(i), and
69 repairprobability(i)
70 as 3 d(10,5), /
71 write repair-function-shape(i),
72 repair function-scale(i), and
73 repairprobability(i)
74 as 3 d(10,5),/
75 I

76 '' Input signals for component.
77 '

78 reserve input.name(i,*),
79 input.signal.type(i,*), and
80 input. signal. strength (i, *)
81 as number inputs(i)
8 2 for j - 1 to number inputs(i)
83 do
84 read input.name(i,j),
85 input.signal.type(i,j), and
86 input.signal.strength(i,j)
87 as b 11, 2 t 10, i 5,/
88 write input.name(ij),
89 input.signal.type(ij), and

*90 input.signal.strength(i,j)
91 as b 11, 2 t 10, i 5, /
92 if trim.f(input.name(i,j),0) eq "system"
93 add 1 to total.signal.count
94 always
95 loop
96 O
97 '' Output signals for components.
98
99 reserve output.name(i,*),

100 output.signal.type(i,*), and
101 output.signal.strength(i, *)
102 as number outputs(j)
103 for j - 1 to number outputs(i)
104 do
105 read output.name(i,j),
106 output.signal.type(i,j), and
107 output.signal.strength(i,j)
108 as b 11, 2 t 10, i 5,/
109 write output.name(i,j),
110 output.signal.type(i,j), and

Dynamic Simulation M~odel 213

111 output.signal.strength(i,j)
112 as b 11, 2 t 10, i 5,/
113 loop
114 add number-outputs(i) to total.signal.count
115 loop
116
117 '' System characteristics.
118
119 read initial.system.state as t 10,/
120 write initial.system.state as t 10,/
121 read system.success.criterion as i 10,
122 write system.success.criteriol as i 10,/
123
124 '' External event records.
125
126 read n.external.event.record as i 10,
127 write n.external.event.record as i 10,/
128 if n.external.event.record gt 0
129 create every external.event.record
130 reserve extevnt.component(*,*), extevnt.origin(*,*), ad
131 extevnt.destination(*,*), extevnt.stype(*,*)
132 as n.external.event.record by*
133
134 for i - 1 to n.external.event.record
135 do
136 read occurrence time(i) as d(10,2)
137 write occurrence time(i) as d(10,2)
138 read number components(i) as i 10,/
139 write number -components(i) as i 10,/
140 if number-components(i) gt 0
141 reserve extevnt. component(i, *) as number components (i)
142 for j - 1 to number components(i)
143 do
144 read extevnt.component(i,j) as t 10
145 write extevnt.component(i,j) as t 10
146 loop
147 read new state(i) as It 10, /
148 write newi-state(i) as ,t 10,/
149 always
150 read number signals(i) as i 10,/
151 write number -signals(i) as i 10, /
152 if number signals(i) gt 0
153 reserve extevnt.oriqin(i,*), extevnt.destination(i,*),
154 extevnt.stype(i,*) as number signals(i)
155 for j - 1 to number signals(i)
156 do
157 read extevnt.origin(i,j),
158 extevnt.destination(i,j),
159 extevnt.stype(i,j)
160 as 3 t 10, /
161 write extevnt.origin(i,j),
162 extevnt.destination(i,j),
163 extevnt.stype(i,j)
164 as 3 t 10,/
165 loop

Dynamic Simulation Model 214

166 read new -strength(i) as 1 10,/
167 write new-strength(i) as 1 10,/
168 always
169 loop
170 always
171
172 end "inpuat

Dynamic Simulation Model 215

1 routine passive given component
2 '
3 ' Develops output signals for a passive component (no explicit
4 ' command signals or power source).5'

6
7 ' input process --- output process

9 '
10 ' Condensed decision table:
11
12 '' Process Initial Final Process
13 '' Case Input State State Output
14 ''
15 '' 1 - failed failed no
16 '' 2 no standby standby no
17 '' 3 yes standby failed no
18 '' operating yes

• 19 '' 4 no operating standby no
20 'S 5 yes operating operating yes
21
22 define rule as a saved 2-dimensional text array
23 define component as a pointer variable
24 define number.process, total.process, output.strength,
25 ruletype, success, and j as integer variables
26 define later.case as a saved integer variable

* 27 "1
28 '' Enter decision table.
29 OP
30 if later.case eq .no
31 reserve rule as 5 by 2
32 let rule(l,l) - "" let rule(l,2) = "failed"
33 let rule(2,1) = "no" let rule(2,2) = "standby"

* 34 let rule(3,1) - "yes" let rule(3,2) - "standby"
35 let rule(4,1) - "no" let rule(4,2) - "operating"
36 let rule(5,1) - "yes" let rule(5,2) - "operating"
37 let later.case - .yes
38 always
39 '
40 '' Determine input signal status.
41
42 for every signal in input.sset(component)
43 do
44 if signal.type(signal) eq "process"
45 add 1 to total.process
46 if strength(signal) eq .on
47 add 1 to number.process
48 always
49 always

• 50 loop
51 It
52 '' Develop test vector for comparison with rules. Assume that
53 '' a single process signal is sufficient (i.e., an OR gate).
54
55 if number.process ge 1

Dynamic Simulation Model
216

56 let test(l) - "yes"
57 else
58 let test(l) - "no"
59 always
60 let test(2) = state(component)
61 '
62 '' Determine appropriate rule.
63
64 for ruletype - 1 to 5
65 do
66 for j - 1 to 2
67 do
68 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
69 go to 'next'
70 always
71 loop
72 go to 'found'
73 'next'
74 loop
75 "1
76 '' Select rule.
77 ''
78 'found'
79 select case ruletype
80
81 case 1
82 let state(component) - "failed"
83 let output.strength -. no
84
85 case 2
86 let state(component) - "standby"
87 let output.strength = .no
88
89 case 3

* 90 call demand.test giving component yielding success
91 if success eq .no
92 let state(component) - "failed"
93 let output.strength - .no
94 else
95 let state(component) = "operating"
96 let output.strength - .yes
97 always

• 98
99 case 4
100 let state(component) = "standby"
101 let output.strength = .no
102
103 case 5
104 let state(component) = "operating"
105 let output.strength = .yes
106
107 default
108
109 '' Error messages can be put here if rule not matched.
110

0

0

0 Dynamic Simulation Model 217

il1 endselect
112
113 '' Update output signals.
114
115 for every signal in output.sset(component)
116 let strength(signal) - output.strength
117
118 return
119
120 end ''passive

Dynamic Simulation Model 218

1 process repair.supervisor
2 ,e
3 '' This process can be modified in the future to determine
4 '' when a failed comporent should begin the repair process.
5 '' Time delays can be inserted (repair delays) and if repair
6 '' resources are limited the number of components under
7 '' repair at any given time can be controlled here.
8 to
9 '' Currently this routine will be called from the system.update
10 '' routine every time a new failure is detected. This routine

* 11 '' uses the repair.probability for the failed component to
12 '' determine if the component is repairable cr not. If the
13 '' component is repairable a repair is then begun immediately.
14 '' To determine what the current status of each component is
15 '' the status variable can be checked. The status will be
16 '' working, resetting, awaiting repa4 r, under repair, or not
17 '' repairable.
18 to
19 '' This portion is for defining a repair delay.
20
21 define component as a pointer variable
22 define a, b, and x as real variables
23 let a - 1.0
24 let b - 100.0
25 let x - time.v
26 if run.type eq 1
27 wait b hours
28 let a - 0.0
29 go to 'good'
30 otherwise
31 '' wait weibull.f(a,b,l) hours
32 'good'
33

* 34 '' If it is desireable to use various repair delays on a frequent
35 '' basis, the program could be modified to read in the repair
36 '' delay distribution parameters. The above delay is a weibull
37 '' distribution, but with the parameters chosen, it is actually
38 '' an exponential distribution.
39
40 for every component in system.cset
41 with failure.time(component) eq x

* 42 find the first case
43 if found
44 if status(component) = .awaiting.repair
45 if random.f(l) le repair.probability(component)
46 resume the component
47 else
48 let status(component) - .not.repairable
49 always

* 50 always
51 let failure.time(component) = -1.0
52 else
53 print 1 line thus
54 In repair supervisor routine the component to repair was not IDed.
55 always

Dynamic Simulation Model 219

56
57 return
58
59 end ''repair.supervisor

Dynamic Simulation Model 220

1 routine run.initialize
2 ,e
3 '' initialization of components, signals, and external events
4 'e
5 define i, J, k, and signal.count as integer variables
6 define x, y, and z as real variables
7 'e
8 '' Component initialization.
9 i,

10 reserve cptr(*) as n.component.record
11 for i = 1 to n.component.record
12 do
13 activate a component called cptr(i) now
14 file cptr(i) in system.cset
15 let name(cptr(i)) = trim.f(componentname(i),0)
16 let component.type(cptr(i)) = trim.f(componenttype(i),O)
17 let n.input.sset(cptr(i)) - number inputs(i)
18 let n.output.sset(cptr(i)) = number outputs(i)
19 let demand.failure.frequency(cptr(i)) =
20 demandfailurefrequency(i)
21 let run.failure.frequency(cptr(i)) - run_failure_frequency(i)
22 let repair.probability(cptr(i)) - repairprobability(i)
23 let repair. function.shape(cptr(i)) = repair function shape(i)
24 let repair.function.scale(cptr(i)) = repair functionscale(i)
25
26 select case component.type(cptr(i))
27
28 case "active"
29 let response.function(cptr(i)) = 'active'
30
31 case "passive"
32 let response.function(cptr(i)) = 'passive'
33
34 case "valve"
35 let response.function(cptr(i)) - 'valve'
36
37 case "check-valve"
38 let response.function(cptr(i)) - 'check.valve'
39
40 case "switch", "breaker"
41 let response.function(cptr(i)) - 'switch'
42
43 default
44 let response.function(cptr(i)) - 'active'
45 print 1 line with name(cptr(i)) thus
46 In initialize routine response function not matched to *********
47
48 endselect
49
50 loop
51 add 5 to total.signal.count ''TANK
52 reserve sptr(*) as total.signal.count
53
54 '' Initialize and file boundary condition signals.
55

*Dynamic Simulation Model 221

56 for j = 1 to n.component.record
57 do
58 for k - I to number inputs(j)

*59 do
60 if trim.f(input.namne(j,k),0) eq "system"
61 add 1 to signal.count
62 create a signal called sptr(signal.count)
63 let signal.type(sptr(signal.count)) -
64 trim.f(input.signal.type(j,k),0)
65 let origin(sptr(signal.count)) - "system"
66 let destination(sptr(signal.count))

*67 trim.f(component_name(j),0)
68 file sptr(signal.count) in input.sset(cptr(j))
69 file sptr(signal.count) in system.boundary.sset
70 file sptr(signal.count) in system.sset
71 always
72 loop
73 loop
74 I

0 75 '' Initialize and file component output signals.
76
77 for j - 1 to n.component.record
78 do
79 for kc - 1 to number outputs(j)
80 do
81 add 1 to signal.count

*82 create a signal called sptr(signal.count)
83 let signal.type(sptr(signal.count)) =
84 trim.f(output.signal.type(j,k) ,0)
85 let origin(sptr(signal.count)) - trim.f(component nane(j) ,0)
86 let destination(sptr(signal.count))=
87 trim.f(output.name(j,k),0)
88 for every component in system.cset
89 with name(component) eq destination(sptr(signal.count))

*90 find the first case
91 if found
92 file sptr(signal.count) in input. sset(component)
93 else
94 if destination(sptr(signal count)) eq "system"
95 file sptr(signal.count) in system.success.sset
96 always
97 always
98 file sptr(signal.count) in output.sset(cptr(j))
99 file sptr(signal.count) in system.sset
100 loop
101 loop
102
103 '' Create and initialize external events, using
104 '' permanent entity external.event.record.

* 105
106 if n.external.event.record gt 0
107 reserve eptr(*) as n.external.event.record
108 for i = 1 to n.external.event.record
109 do
110 activate an external.event called eptr(i) now

Dynamic Simulation Model 222

ill let occurrence.time(eptr(i)) = occurrence_time(i)
112 add .001 to occurrence.time(eptr(i))
113 let new.state(eptr(i)) - trim.f(new-state(i),O)
114 for j - 1 to number-components(i)
115 do
116 for every component in system.cset
117 with name(component) eq trim. f(extevnt.compcnent(i,j) ,0)
118 find the first case
119 if found
120 file component in extevnt.cset(eptr(i))
121 always
122 loop
123 let new, strength (eptr(i)) - new strength (i)
124 let number.signals(eptr(i)) - number-signals(i)
125 if number.signals(eptr(i)) eq 1
126 let siejna..origin(eptr(i)) = trim.f(extevnt.origin(i,1),0)
127 let signal.destinationceptr(i)) -
128 trim.f(extevnt.destination(il) ,0)
129 let signal.typee(eptr(i)) = trim.f(extevnt.stype(i,1),O)
130 always
131 file eptr(i) in system.eset
132 loop
133 always
134
135 reserve test as 4
136 reserve signal.status(*) as dim.f(sptr(*))
137 reserve unavailability.dist(*) as ntrial
138 reserve aptr(*) as ntimes
139 if distribution.type eq 1
140 let x - simulation.time / (ntimes -1)

141 let time avail(l) - 0.
142 for i - 2 to ntimes
143 do
144 let time avail(i) - (i -)*x
145 loop
146 always
147 if distribution.type eq 2
148 let y - log.l0.f(simulation.time)
149 let x -y/ (ntimes-l1)
150 let time avail(l) - 0.
151 for i - 2 to ntimes
152 do
153 let z -(i-1 x
154 let time_avail(i) - 10 ** z
155 loop
156 always
157 for i - 1 to ntimes
158 do
159 activate an availability called aptr(i) now
160 let time.avail(aptr(i)) - time_avail(i)
161 loop
162
163 return
164
165 end ''run.initialize

*Dynamic Simulation Model 223

1 routine run.output
2"

* 3 '' This routine will print the output report at the end of the
4 '' run. It prints the time dependent unavailability data and the
5 '' average unavailability distribution data.
6
7 define x as a real variable
8
9 for i1 1 to ntimes
10 do

*11 let x - time.avail.data(aptr(i))
12 let time.avail.data(aptr(i)) - x / ntrial
13 let x - 1 - time.avail.data(aptr(i))
14 let time.avail.data(aptr(i)) - x
15 loop
16
17 write as ,/
18 print 6 lines with ntrial thus

*19 AFTER **** TRIALS
20
21 THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS
22
23 TIME UNAVAILABILITY

25 for i-l1to ntimes
26 do
27 print 2 lines with time.avail(aptr(i))
28 and time.avail.data(aptr(i)) thus
29
30 ****

31 loop
32 00
33 '' Sort the average unavailability distribution data.
34 '

35 define 1, m, n, J, kc, and im as integer variables
36 define xp as a real variable
37
38 let z - ntrial
39 'sortl'
40 letl1- m
41 let m - div.f(1,2)

*42 iftmgt 0
43 let kc - ntrial - m
44 for j-lIto k
45 do
46 let n j
47 'sort2'
48 let im -n+ m
49 if unavailability.dist(n) gt unavailability.dist(im)

*50 let xp - unavailability.dist(n)
51 let unavailability.dist(n) =unavailability.distim)
52 let unavailability.dist(im) =xp

53 letl1- n
54 letn -lI- m
55 if ngt 0

Dynamic Simulation Model 224

56 go to 'sort2'
57 otherwise
58 always
59 loop
60 if m gt 0
61 go to 'sortl'
62 otherwise
63 always
64
65 write as *,/,/
66 print 6 lines with ntrial and simulation.time thus
67 AFTER **** TRIALS

68 AND
69 OVER A TIME PERIOD OF ***** HOURS
70 THE AVERAGE SYSTEM UNAVAILABILITY IS AS FOLLOWS
71
72
73 define xl, x5, x25, x40, x50, x60, x75, x95, and x99
74 as integer variables
75 let xl - div.f(ntrial,l00)
76 let x - 5 * ntrial
77 let x5 - div.f(x,100)
78 let x - 25 * ntrial
79 let x25 - div.f(x,100)
80 let x = 40 * ntrial
81 let x40 - div.f(x,100)
82 let xSO - div.f(ntrial,2)
83 let x - 60 * ntrial
84 let x60 - div.f(x,100)
85 let x - 75 * ntrial
86 let x75 - div.f(x,100)
87 let x - 95 * ntrial
88 let x95 - div.f(x,100)
89 let x - 99 * ntrial
90 let x99 - div.f(x,100)
91 if xl eq 0
92 let xl - 1
93 always
94 if x5 eq 0
95 let x5 - 1
96 always
97 print 27 lines with minimum.unavailability, unavailability.dist(xl),
9C unavailability.dist(x5), unavailability.dist(x25),
99 unavailability.dist(x40), unavailability.dist(x50),

100 unavailability.dist(x60),unavailability.dist(x75),
101 unavailability.dist(x95), unavailability.dist(x99),
102 maximum.unavailability, average.unavailability,
103 and variance.unavailability thus
104
105 The minimum is:
106
107 The ist percentile is: .
108
109 The 5th percentile is: .
110

* Dynamic Simulation Model 225

111 The 25th percentile is: *.***
112
113 The 40th percentile is: *.****
114
115 The 50th percentile is: .
116
117 The 60th percentile is: *.***
118
119 The 75th percentile is: *.***
120
121 The 95th percentile is: .
122
123 The 99th percentile is: *
124
125 The maximum is:
126
127 The mean is:
128
129 The variance is:
130
131
132 '' Use this portion to print out all of the average system
133 '' unavailability values, one for every trial. These are the
134 '' values on which the above percentiles are based.
135
136 '' write as *,/,/
137 '' for i - 1 to ntrial

• 138 '' do
139 '' print I line with i and unavailability.dist(i) thus
140 '' point **** is *.****
141 '' loop
142
143 end "'run.output

0

Dynamic Simulation Model 226

1 process schedule.avail.samples
2 It
3 '' This process will cause samples to be taken at the designated
4 " times during each trial to compute the time dependent
5 " availability of the system.
6
7 define x as a real variable
8
9 wait .002 hours

10 resume the availability called aptr(l)
11 for i - 2 to ntimes

* 12 do
13 let x - time.avail(aptr(i)) - time.avail(aptr(i - 1))
14 wait x hours
15 resume the availability called aptr(i)
16 loop
17
18 return
19
20 end "schedule.avail.samples

Dynamic Simulation Model 227

1 process schedule.external.events
2 ,0
3 '' Schedules external events.
4 Of
5 define i as an integer variable
6 define x as a real variable
7
8 if n.external.event.record gt 0
9 wait occurrence.time(eptr(l)) hours

10 resume the external.event called eptr(l)
11 for i - 2 to dim.f(eptr(*))
12 do
13 let x - occurrence.time(eptr(i)) - occurrence.time(eptr(i - 1))
14 wait x hours
15 resume the external.event called eptr(i)
16 loop
17 always
18
19 return
20
21 end ''schedule.external.events

* Dynamic Simulation Model 228

1 process stop.scenario
2 t
3 '' This process will interrupt any external events or components* 4 '' still scheduled to occur later in time. It then resets all
5 '' components so they can begin operation again in the next trial.
6 It
7 call system.update
8
9 for every external.event in ev.s(i.external.event)

10 interrupt external.event
11

* 12 for every component in ev.s(i.component)
13 do
14 interrupt component
15 let time.a(component) - 0.0
16 loop
17
18 for every component in system.cset
19 do

* 20 let status(component) =resetrun
21 resume component
22 loop
23
24 return
25
26 end ''stop.scenario

Dynamic Simulation Model 229

1 routine switch given component
2 ,
3 '' Develops output signals for a switch or breaker
4 '' using explicit command signals. Assumes that the component
5 '' has one or more command signal inputs, power inputs, and
6 '' process inputs:
7 I,

8 ''input
command --9 '' input power --- output process

10 '" input process --- _ I
11
12 ' Condensed decision table:
13
14 ' Command Power Process Initial Final Process
15 'Case Input Input Input State State Output
16 '------------------
17 '' 1 - - - failed open failedopen no
18'' 2 - no - open open no
19 '' 3 open - - open open no
20'' 4 none - - open open no
21 '' 5 close yes no open failedopen no
22 '' closed no
23 '' 6 close yes yes open failedopen no
24 '' closed yes
25 '' 7 - - no failed closed failed closed no
26 '' 8 - - yes failed-closed failed closed yes
27 '' 9 - no no closed closed no
28 '' 10 - no yes closed closed yes
29 '' 11 open yes no closed failedclosed no
30 '' open no
31 '' 12 open yes yes closed failedclosed yes
32 ', open no
33 '' 13 none - no closed closed no
34 '' 14 none - yes closed closed yes
35 '' 15 close - no closed closed no
36 '' 16 close - yes closed closed yes
37
38 define rule as a saved 2-dimensional text array
39 define component as a pointer variable
40 define index.command, total.command, number.power, total.power,
41 number.process, total.process, output.strength, ruletype,
42 success and j as integer variables
43 define later.case as a saved integer variable
44
45 '' Enter decision table.
46
47 if later.case eq no
48 reserve rule as 16 by 4
49 let rule(l,1) - let rule(1,2) -
50 let rule(i,3) - let rule(1,4) - "failed_open"
51 let rule(2,1) "" let rule(2,2) = "no"
52 let rule(2,3) "" let rule(2,4) = "open"
53 let rule(3,1) - "open" let rule(3,2) - ""
54 let rule(3,3) - "" let rule(3,4) - "open"
55 let rule(4,1) - "none" let rule(4,2) -

Dynamic Simulation Model
230

56 let rule(4,3) = "" let rule(4,4) = "open"
57 let rule(5,1) = "close" let rule(5,2) = "yes"

58 let rule(5,3) - "no" let rule(5,4) = "open"
59 let rule(6,1) = "close" let rule(6,2) = "yes"

60 let rule(6,3) = "yes" let rule(6,4) = "open"
61 let rule(7,1) = "" let rule(7,2) = ""
62 let rule(7,3) = "no" let rule(7,4) - "failedclosed"
63 let rule(8,1) - "" let rule(8,2) - I'll
64 let rule(8,3) - "yes" let rule(8,4) - "failed-closed"
65 let rule(9,1) = "" let rule(9,2) - "no"
66 let rule(9,3) - "no" let rule(9,4) - "closed"
67 let rule(10,1) - "" let rule(10,2) - "no"
68 let rule(l0,3) - "yes" let rule(10,4) - "closed"
69 let rule(ll,l) - "open" let rule(ll,2) - "yes"
70 let rule(ll,3) "no" let rule(11,4) = "closed"
71 let rule(12,1) "open" let rule(12,2) = "yes"
72 let rule(12,3) - "yes" let rule(12,4) = "closed"
73 let rule(13,1) = "none" let rule(13,2) = ""

* 74 let rule(13,3) - "no" let rule(13,4) = "closed"
75 let rule(14,) "none" let rule(14,2) - ""
76 let rule(14,3) - "yes" let rule(14,4) - "closed"
77 let rule(15,1) - "close" let rule(15,2) - ""
78 let rule(15,3) - "no" let rule(15,4) - "closed"
79 let rule(16,1) - "close" let rule(16,2) - ""

80 let rule(16,3) - "yes" let rule(16,4) = "closed"
81 let later.case -. yes

* 82 always
83
84 '' Determine input signal status. Assume that "open" and "close"
85 '' commands cancel each other out (respective values of 1 and -1).
86
87 for every signal in input.sset(component)
88 do
89 if signal.type(signal) eq "process"

* 90 add 1 to total.process
91 if strength(signal) eq .on
92 add 1 to number.process
93 always
94 else
95 if signal.type(signal) eq "power"
96 add 1 to total.power

* 97 if strength(signal) eq .on
98 add 1 to number.power
99 always
100 else
101 add 1 to total.command
102 add strength(signal) to index.command
103 always
104 always

* 105 loop
106
107 '' Develop test vector for comparison with rules. Assume that
108 '' a single process signal is sufficient, and that a single power
109 '' signal is sufficient (i.e., OR gates).
110

0I

0

Dynamic Simulation Model 231

111 if index.command eq -1
112 let test(l) - "close"
113 else
114 if index.command eq 0
115 let test(l) = "none"
116 else
117 let test(l) - "open"
118 always
119 always
120 if number.power ge 1
121 let test(2) - "yes"
122 else
123 let test(2) - "no"
124 always
125 if number.process ge 1
126 let test(3) - "yes"
127 else
128 let test(3) - "no"
129 always
130 let test(4) = state(component)
131 ''
132 '' Determine appropriate rule.
133
134 for ruletype - 1 to 16
135 do
136 for j - 1 to 4
137 do
138 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
139 go to 'next'
140 always
141 loop
142 go to 'found'
143 'next'
144 loop
145 ''
146 '' Select rule.
147
148 'found'
149 select case ruletype
150
151 case 1
152 let state(component) - "failed open"
153 let output.strength - .no
154
155 case 2, 3, 4
156 let state(component) - "open"
157 let output.strength = .no
158
159 case 5
160 call demand.test giving component yielding success
161 if success eq .no
162 let state(component) - "failed open"
163 let output.strength = .no
164 else
165 let state(component) - "closed"

Dynamic Simulation Model 232

166 let output.strength = .no
167 always
168
169 case 6
170 call demand.test giving component yielding success
171 if success eq .no
172 let state(component) = "failedopen"
173 let output.strength = .no
174 else
175 let state(component) - "closed"
176 let output.strength - .yes
177 always
178
179 case 7
180 let state(component) = "failed-closed"
181 let output.strength - .no
182
183 case 8
184 let state(component) = "failedclosed"

* 185 let output.strength = .yes
186
187 case 9, 13, 15
188 let state(component) - "closed"
189 let output.strength = .no
190
191 case 10, 14, 16
192 let state(component) = "closed"
193 let output.strength = .yes
194
195 case 11
196 call demand.test giving component yielding success
197 if success eq .no
198 let state(component) = "failedclosed"
199 let output.strength - .no

* 200 else
201 let state(component) - "open"
202 let output.strength - .no
203 always
204
205 case 12
206 call demand.test giving component yielding success
207 if success eq .no

• 208 let state(component) - "failedclosed"
209 let output.strength - .yes
210 else
211 let state(component) - "open"
212 let output.strength - .no
213 always
214
215 default
216 ''
217 '' Error messages can be put here if rule not matched.
218
219 endselect
220

Dynamic Simulation Model 233

221 '' Update output signals.
222
223 for every signal in output.sset(component)
224 let strength(signal) = output.strength
225
226 return
227
228 end ''switch

Dynamic Simulation Model 234

1 routine system.update
2 It
3 '' Updates status of signals in system, given status of all compcncnts
4 '' Performs iterations until signals stabilize or number of iterations
5 '' is exceeded.
6 0
7 '' Notes:
8 '' 1) Currently, maximum is set by number of signals. Later
9 '' versions might make use of digraph/Petri net results.

10 '' 2) Current version re-analyzes every component. Later versions
11 '' might only re-analyze components whose input changes.
12 '
13 define rf as a subprogram variable
14 define i, itr, max.itr and number.success
15 as integer variables
16
17 for i = 1 to dim.f(sptr(*))
18 let signal.status(i) = strength(sptr(i))
19
20 let max.itr - dim.f(sptr(*))
21 for itr = 1 to max.itr
22 do
23 Of
24 '' 1) Check for changed component states and changed input
25 '' signals.
26 '' 2) If found, place a demand on the component, and determine
27 '' component response. (Later versions may activate signals
28 '' here). Note that since output signals are updated
29 '' in routine response.function, input signals for
30 '' downstream components are also updated.
31
32 for every component in system.cset
33 do
34 if state(component) ne old.state(component)
35 let rf - response.function(component)
36 call rf giving component
37 always
38 for every signal in input.sset(component)
39 with strength(signal) no old.strength(signal)
40 find the first case
41 if found
42 let rf - response.function(component)
43 call rf giving component
44 always
45 loop
46 10
.47 '' Quit iteration if no changes to entire set of signals.
48 ''
49 for i - 1 to dim.f(sptr(*))
50 with strength(sptr(i)) ne signal.status(i)
51 find the first case
52 if found
53 for i = 1 to dim.f(sptr(*))
54 let signal.status(i) - strength(sptr(i))
55 else

Dynamic Simulation Model 235

56 go to 'update'
57 always
58 loop
59 print 2 lines with 24*time.v thus
60 !I! Error: Iteration maximum exceeded in routine system.update
61 time = ****.*** hours.
62
63 '' Activate newly started components, interrupt newly stopped
64 '' components.
65
66 'update'
67 for every component in system.cset
68 do
69 if status(component) eq .working
70 if state(component) ne old.state(component)
71 select case component.type(component)
72
73 case "active", "passive"
74 if state(component) oq "failed"
75 or state(component) eq "standby*"
76 or state(component) eq "operating*"
77 if old.state(component) eq "operating"
78 interrupt the component
79 always
80 let time.a(component) - 0.0
81 resume the component
82 always
83 if state(component) eq "standby"
84 and old.state(component) eq "operating"
85 interrupt the component
86 always
87 if state(component) eq "operating"
88 and old.state(component) eq "standby"
89 let time.a(component) - 0.0
90 let status(component) - .resetting
91 resume the component
92 always
93
94 case "check.valve", "switch", "valve"
95 if state(component) eq "closed"
96 and old.state(component) eq "open"
97 let status(component) - .resetting
98 interrupt the component
99 let time.a(component) = 0.0
100 resume the component
101 always
102 if state(component) eq "open"
103 and old.state(component) eq "closed"
104 let status(component) = .resetting
105 interrupt the component
106 let time.a(component) = 0.0
107 resume the component
108 always
109 if state(component) eq "failedopen"
110 or state(component) eq "failed-closed"

Dynamic Simulation Model 236

iii interrupt the component
112 let time.a(component) = 0.0
113 resume the component
114 always
115
116 default
117 print 1 line thus
118 When performing the system.update, no matching case!
119
120 endselect
121 always

* 122 always
123 loop
124
125 '' Update status of system, components and signals.
126
127 for every signal in system.success.sset
128 do
129 if strength(signal) eq .on

* 130 add 1 to number.success
131 always
132 loop
133 if number.success ge system.success.criterion
134 let system.state = "good"
135 let system. ind.var = 1
136 else

* 137 let system.state - "failed"
138 let system.ind.var - 0
139 always
140
141 call flow.update giving tptr(l) ''TANK
142
143 for every component in system.cset
144 let old.state(component) - state(component)
145
146 for every signal in system.sset
147 let old.strength(signal) - strength(signal)
148
149 return
150
151 end ''system.update

Dynamic Simulation Model 237

1 roucine trial.initialize
2 $1
3 '' This routine initializes the state of each component
4 '' and the strength of each signal at the beginning of
5 '' a trial.
6
7 define i, J, and k as integer variables
8
9 let system.state - trim.f(initial.system.state,0)

10 if system.state eq "operating"
11 let system. ind.var - 1
12 else
13 let system.ind.var - 0
14 always
15
16 '' Component state initialization.
17
18 for i = 1 to n.component.record
19 do
20 let old.state(cptr(i)) = trim.f(initial_state(i),0)
21 let state(cptr(i)) = old.state(cptr(i))
22 loop
23
24 ' Signal strength initialization.
25 'D
26 for i - 1 to n.component.record
27 do
28 for j - 1 to number inputs(i)
29 do
30 for every signal in system.sset
31 with origin(signal) eq "system"
32 and destination(signal) eq trim.f(component name(i),o)
33 and signal.type(signal) eq trim.f(input.signal.type(i,j),o)
34 find the first case

* 35 if found
36 let strength(signal) - input.signal.strength(i,j)
37 always
38 loop
39 for k - 1 to numberoutputs(i)
40 do
41 for every signal in system.sset
42 with origin(signal) eq trim.f(componentname(i),O)

* 43 and destination(signal) eq trim.f(output.name(i,k),O)
44 and signal.type(signal) eq trim.f(output.signal.type(i,k),O)
45 find the first case
46 if found
47 let strength(signal) - output.signal.strength(i,k)
48 always
49 loop
50 loop

* 51
52 return
53
54 end ''trial.initialize

01

Dynamic Simulation Model 238

1 routine valve given component
2 of
3 '' Develops output signals for an MOV or manual valve
4 '' using explicit command signals. Assumes that the component
5 '' has one or more command signal inputs, power inputs, and
6 '' process inputs:
7 I,

8 '' input command ---
9 '' input power output process

10 '' input process
11 to
12 '' Condensed decision table:
13
14 '' Command Power Process Initial Final Process
15 '' Case Input Input Input State State Output
16 ''--------------------
17 '' 1 - - failed closed failed closed no
18 '' 2 - no - closed closed no
19 '' 3 close - closed closed no
20 '' 4 none - closed closed no
21 '' 5 open yes no closed failedclosed no
22 '' open no
23 '' open yes yes closed failedclosed no
24 '' open yes
25 '' 7 - no failed open failedopen no
26 '' 8 - yes failed-open failedopen yes
27'' 9 - no no open open no
28 '' 10 - no yes open open yes
29 '' 11 close yes no open failedopen no
30 '' closed no
31 '' 12 close yes yes open failed open yes
32 '' closed no
33 '' 13 none - no open open no
34 '' 14 none - yes open open yes
35 '' 15 open - no open open no
36 " 16 open - yes open open yes
37
38 define rule as a saved 2-dimensional text array
39 define component as a pointer variable
40 define index.command, total.command, number.power, total.power,
41 number.process, total.process, output.strength, ruletype,
42 success and j as integer variables
43 define later.case as a saved integer variable
44
45 '' Enter decision table.
46
47 if later.case eq .no
48 reserve rule as 16 by 4
49 let rule(l,l) "" let rule(1,2) =
50 let rule(l,3) "" let rule(l,4) - "failedclosed"
51 let rule(2,1) -"" let rule(2,2) - "no"
52 let rule(2,3) "" let rule(2,4) = "closed"
53 let rule(3,1) - "close" let rule(3,2) ""
54 let rule(3,3) - "" let rule(3,4) - "closed"
55 let rule(4,1) = "none" let rule(4,2) -

Dynamic Simulation Model
239

56 let rule(4,3) - "" let rule(4,4) = "closed"
57 let rule(5,1) - "open" let rule(5,2) = "yes"
58 let rule(5,3) = "no" let rule(5,4) = "closed"
59 let rule(6,1) - "open" let rule(6,2) - "yes"
60 let rule(6,3) - "yes" let rule(6,4) - "closed"
61 let rule(7,1) = "" let rule(7,2) = ""
62 let rule(7,3) = "no" let rule(7,4) = "failed_open"
63 let rule(8,1) = "" let rule(8,2) - I'll
64 let rule(8,3) - "yes" let rule(8,4) - "failed_open"
65 let rule(9,1) - "" let rule(9,2) - "no"
66 let rule(9,3) - "no" let rule(9,4) - "open"
67 let rule(l0,l) - "" let rule(10,2) - "no"
68 let rule(10,3) - "yes" let rule(10,4) - "open"
69 let rule(11,1) = "close" let rule(11,2) = "yes"
70 let rule(11,3) = "no" let rule(ll,4) - "open"
71 let rule(12,1) - "close" let rule(12,2) - "yes"
72 let rule(12,3) = "yes" let rule(12,4) = "open"
73 let rule(13,) = "none" let rule(13,2) - "t
74 let rule(13,3) - "no" let rule(13,4) = "open"
75 let rule(14,1) - "none" let rule(14,2) = ""
76 let rule(14,3) = "yes" let rule(14,4) = "open"
77 let rule(15,1) - "open" let rule(15,2) - ""
78 let rule(15,3) - "no" let rule(15,4) - "open"
79 let rule(16,1) = "open" let rule(16,2) - ""
80 let rule(16,3) - "yes" let rule(16,4) = "open"
81 let later.case - .yes
82 always
83 1
84 '' Determine input signal status. Assume that "open" and "close"
85 '' commands cancel each other out (respective values of 1 and -1).
86
87 for every signal in input.sset(component)
88 do
89 if signal.type(signal) eq "process"
90 add 1 to total.process
91 if strength(signal) eq .on
92 add 1 to number.process
93 always
94 else
95 if signal.type(signal) eq "power"
96 add 1 to total.power
97 if strength(signal) eq .on

* 98 add 1 to number.power
99 always
100 else
101 add 1 to total.command
102 add strength(signal) to index.command
103 always
104 always
105 loop

* 106 11
107 '' Develop test vector for comparison with rules. Assume that
108 '' a single process signal is sufficient, and that a single power
109 '' signal is sufficient (i.e., OR gates).
110 ''

-0

Dynamic Simulation Model 240

111 if index.command eq -1
112 let test(l) = "close"
113 else
114 if index.command eq 0
115 let test(l) = "none"
116 else
117 let test(1) = "open"
118 always
119 always
120 if number.power ge 1
121 let test(2) - "yes"
122 else
123 let test(2) - "no"
124 always
125
126 '' By changing the test for number of process inputs, it is
127 '' possible to simulate k-out-of-n components.
128
129 if number.process ge 1

* 130 let test(3) - "yes"
131 else
132 let test(3) - "no"
133 always
134 let test(4) - state(component)
135 ''
136 " Determine appropriate rule.
137
138 for ruletype = 1 to 16
139 do
140 for j - 1 to 4
141 do
142 if rule(ruletype,j) ne "" and rule(ruletype,j) ne test(j)
143 go to 'next'
144 always

* 145 loop
146 go to 'found'
147 'next'
148 loop
149 1'
150 '' Select rule.
151
152 'found'
153 select case ruletype
154
155 case 1
156 let state(component) - "failed-closed"
157 let output.strength - .no
158
159 case 2, 3, 4
160 let state(component) = "closed"
161 let output.strength = .no
162
163 case 5
164 call demand.test giving component yielding success
165 if success eq .no

* Dynamic Simulation Model 241

166 let state(component) = "failed-closed"
167 let output.strength = .no
168 else
169 let state(component) = "open"
170 let output.strength = .no
171 always
172
173 case 6
174 call demand.test giving component yielding success
175 if success eq .no

* 176 let state(component) = "failedclosed"
177 let output.strength - .no
178 else
179 let state(component) - "open"
180 let output.strength = .yes
181 always
182
183 case 7

* 184 let state(component) "failedopen"
185 let output.strength = .no
186
187 case 8
188 let state(component) "failed_open"
189 let output.strength = .yes
190
191 case 9, 13, 15

* 192 let state(component) = "open'
193 let output.strength -. no
194
195 case 10, 14, 16
196 let state(component) - "open"
197 let output.strength - .yes
198
199 case 11
200 call demand.test giving component yielding success
201 if success eq .no
202 let state(component) - "failed-open"
203 let output.strength - .no
204 else
205 let state(component) - "closed"
206 let output.strength - .no
207 always
208
209 case 12
210 call demand.test giving component yielding success
211 if success eq .no
212 let state(component) - "failedopen"
213 let output.strength - .yes
214 else

* 215 let state(component) - "closed"
216 let output.strength = .no
217 always
218
219 default
220

0

Dynamic Simulation Model 242

221 '' Error messages can be put here if rule not matched.
222
223 endselect
224
225 " Update output signals.
226
227 for every signal in output.sset(component)
228 let strength(signal) - output.strength
229
230 return
231
232 end ''valve

Dynamic Simulation Model 243

Appendix C

TANK Program Listing

Dynamic Simulation Model 244

1 routine flow.update given tank
2
3 " Determine the new flow rate if it has changed.
4 I

5 define tank as a pointer variable
6 let flow.rate.in(tank) =0

7 let flow.rate.out(tank) -0
8 for every component in tank.input.cset(tank)
9 do

10 if name(component) eq "unit2"'
11 if state(component) eq "open"
12 or state(component) eq 'failed open"
13 add 0.01 to flov.rate.in(tank)
14 always
13 else
16 if name(component) eq "unit3"'
17 if state (component) eq "open"
18 or state(component) eq "failed open"
19 add 0.005 to flow.rate.in(tank)
20 always
21 always
22 always
23 loop
24 for every component in tank.output.cset(tank)
25 do
26 if state(component) eq "open"
27 or state(component) eq "failed open"
28 add 0.01 to flow.rate.out(tank)
29 always
30 loop
31
32 return
33
34 end 1'flow.update

* Dynamic Simulation Model 245

1 process stop.tank
2 to
3 '' This process will reset the tank process so it is ready
4 '' for the execution of another trial.
5 to

6 for every tank in ev.s(i.tank)
7 do
a interrupt the tank
9 loop
10
11 for every tank in system.tset

* 12 do
13 let level(tank) - 100.0
14 let time.a(tank) - 0.0
15 resume the tank
16 loop
17
18 return
19

* 20 end ''stop.tank

Dynamic Simulation Model 246

1 process tank
2 '
3 '' This routine will continuously monitor the water level
4 '' in a tank.
5 ''
6 'tankreset'
7 suspend
a while time.v it (simulation.time + 10)
9 do

10 is
11 '' This portion of the routine determines if the tank is in the

* 12 '' proper control region and calls the tank update routine to
13 '' make changes if necessary.
14 ''
15 work continuously evaluating 'water.level' testing 'tank.condition'
16 let net.flow.rate(tank) = flow.rate.in(tank) - flow.rate.out(tank)
17 if level(tank) gt 90.0
18 go to 'tankreset'
19 otherwise

• 20 call tank.update giving tank
21 if level(tank) gt high.level(tank)
22 or level(tank) lt low.level(tank)
23 suspend
24 go to 'tankreset'
25 always
26
27 loop

* 28
29 suspend
30
31 end ''tank

* Dynamic Simulation Model 247

1 function tank.condition(tank)
2 "
3 '' This function will cause calling of the tank update

* 4 '' routine if the tank status is not satisfactory.
5
6 define tank as a pointer variable
7 'I

8 '' Use this method to adjust tank flow rate only at the
9 '' end of integration time steps.
10
11 define x as a real variable
12 let x = flow.rate.in(tank) - flow.rate.out(tank)
13 if net.flow.rate(tank) ne x
14 return with 1
15 otherwise
16 ''
17 '' Is the tank too full?
18

* 19 if level(tank) gt high.level(tank)
20 return with 1
21 otherwise
22
23 "' Is the tank too empty?
24
25 if level(tank) lt low.level(tank)
26 return with 1
27 otherwise
28
29 '' Is the tank level high and the control state wrong?
30
31 if level(tank) gt high.set(tank)
32 for every component in system.cset
33 do
34 if name(component) eq "unitl"
35 and state(component) eq "closed"
36 return with 1
37 otherwise
38 if name(component) eq "unit2"
39 and state(component) eq "open"
40 return with 1
41 otherwise
42 if name(component) eq "unit3"
43 and state(component) eq "open"
44 return with 1
45 otherwise
46 loop
47 always
48
49 '' Is the tank level low and the control state wrong?
50
51 if level(tank) lt low.set(tank)
52 for every component in system.cset
53 do
54 if name(component) eq "unitl"
55 and state(component) eq "open"

Dynamic Simulation Model 248

56 return with 1
57 otherwise
58 if name(component) eq "unit2"
59 and state(component) eq "closed"
60 return with 1
61 otherwise
62 if name(component) eq "unit3"
63 and state(component) eq "closed"
64 return with 1
65 otherwise
66 loop
67 always
68
69 '' Is the tank level satisfactory and the control state wrong?
70
71 if level(tank) le high.set(tank)
72 and level(tank) ge low.set(tank)
73 for every component in system.cset
74 do
75 if name(component) eq "unit1"
76 and state(component) eq "closed"
77 return with 1
78 otherwise
79 if name(component) eq "unit2"
80 and state(component) eq "closed"
81 return with 1
82 otherwise
83 if name(component) eq "unit3"
84 and state(component) eq "open"
85 return with 1
86 otherwise
87 loop
88 always
89 return with 0
90
91 end ''tank.condition

Dynamic Simulation Model 249

1 routine tank.initialize.run
2 11
3 '" This routine initializes all of the variables associated
4 '' with the Aldemir Tank Problem. Initializes for the number
5 '' of trials to be performed.
6
7 define signal.count as an integer variable
8 let integrator.v = 'runge.kutta.r'
9 let max.step.v = 0.04166666666667 '' Approximately 1 hour

10 let min.step.v - 0.04166666666667 '' Approximately 1 hour
11 let abs.err.v - 0.001
12 let rel.err.v - 0.1
13 '1
14 " Create a tank.
15
16 reserve tptr(*) as 1
17 activate a tank called tptr(l) now
18 file tptr(l) in system.tset
19 let high.level(tptr(l)) = 3.0
20 let low.level(tptr(l)) = -3.0
21 let high.set(tptr(l)) = 1.0
22 let low.set(tptr(l)) - -1.0
23 ''
24 '' Must create all of the Tank output signals since the base
25 '' program does not recognize the tank as a component. These
26 '' signals include three command signals (one to each valve),
27 " the tank process output to the outlet valve, and the process
28 '' output signal to the system for system status checking.
29
30 let signal.count - 9
31 create a signal called sptr(signal.count)
32 let signal.type(sptr(signal.count)) - "command"
33 let origin(sptr(signal.count)) - "tank"
34 let destination(sptr(signal.count)) - "unitl"

* 35 for every component in system.cset
36 with name(component) eq "unitl"
37 find the first case
38 if found
39 file sptr(signal.count) in input.sset(component)
40 always
41 file sptr(signal.count) in tank.output.sset(tptr(l))
42 file sptr(signal.count) in system.sset

* 43 Of
44 add 1 to signal.count
45 create a signal called sptr(signal.count)
46 let signal.type(sptr(signal.count)) - "command"
47 let origin(sptr(signal.count)) - "tank"
48 let destination(sptr(signal.count)) - "unit2"
49 for every component in system.cset
50 with name(component) eq "unit2"

* 51 find the first case
52 if found
53 file sptr(signal.count) in input.sset(component)
54 always
55 file sptr(signal.count) in tank.output.sset(tptr(l))

Dynamic Simulation Model 250

56 file sptr(signal.count) in system.sset
57 I

58 add 1 to signal.count
59 create a signal called sptr(signal.count)
60 let signal.type(sptr(signal.count)) = "command"
61 let origin(sptr(signal.count)) - "tank"
62 let destination(sptr(signal.count)) = "unit3"'
63 for every component in system.cset
64 with name(component) eq "unit3"'
65 find the first case
66 if found
67 file sptr(signal.count) in input.sset(component)
68 always
69 file sptr(signal.count) in tank.output.sset(tptr(l))
70 file sptr(signal.count) in system.sset
71
72 add 1 to signal.count
73 create a signal called sptr(signal.count)
74 let signal.type(sptr(signal.count)) - "process"
75 let origin(sptr(signal.count)) - "tank"
76 let destination(sptr(signal.count)) = "unitl"
77 for every component in system.cset
78 with name(component) eq "unitl"
79 find the first case
80 if found
81 file sptr(signal .count) in input. sset(component)
82 always
83 file sptr(signal.count) in tank.output.sset(tptr(l))
84 file sptr(signal.count) in system.sset
85
86 add 1 to signal.count
87 create a signal called sptr(signal.count)
88 let signal.type(sptr(signal.count)) - "process"
89 let origin(sptr(signal.count)) - "tank"
90 let destination(sptr(siqnal.count)) - "system"
91 file sptr(signal.count) in tank.output.sset(tptr(l))
92 file sptr(signal.count) in system.sset
93 file sptr(signal.count) in system.success.sset
94 for every component in system.cset
95 do
96 for every signal in output.sset(compoient)
97 do
98 if destination(signal) eq "tank"
99 file signal in tank.input.sset(tptr(l))
100 file component in tank.input.cset(tptr(l))
101 always
102 loop
103 for every signal in input.sset(component)
104 with signal.type(signal) eq "process"
105 do
106 if origin(signal) eq "tank"
107 file component in tank.output.cset(tptr(l))
108 always
109 loop
110 loop

*Dynamic Simulation Model 251

112 return
113

* 114 end ''tank.initialize.run

Dynamic Simulation Model 252

1 routine tank.initialize.trial
2 '
3 '" This routine will reset the appropriate values to begin
4 #P a new trial with the tank operating correctly.
5 1
6 let level(tptr(1)) - 0.0
7 let net.flow.rate(tptr(l)) = 0.0
8 for every signal in tank.output.sset(tptr(l))
9 do
10 01
11 " Turn on the flow output and test signal from the tank.
12
13 if signal.type(signal) - "process"
14 let strength(signal) - .on
15 always
16 's
17 '' Turn off the command signals for the valves to change position.
18 ''
19 if signal.type(signal) - "command"
20 let strength(signal) = .off
21 always
22 loop
23
24 return
25
26 end ''tank.initialize.trial

Dynamic Simulation Model 253

1 routine tank.update given tank
2 0,
3 '' This routine determines the flow going in and out of the
4 '' tank and controls the opening and closing of the inlet and
5 '' outlet valves. If the tank should happen to dryout or over
6 '' flow this routine will suspend the tank routine.
7
8 define tank as a pointer variable
9 eI

10 " This is to track dryout.
11
12 if level(tank) lt low.level(tank)
13 ' for every signal in tank.output.sset(tank)
14 '' with signal.type(signal) eq "process"
15 '' do
16 '' let strength(signal) = no
17 '' loop
18 go to 'leave'
19 otherwise
20
21 " This is to track overflow.
22
23 if level(tank) gt high.level(tank)
24 for every signal in tank.output.sset(tank)
25 with destination(signal) eq "system"
26 do
27 let strength(signal) = .no
28 loop
29 go to 'leave'
30 otherwise
31 if level(tank) lt low.set(tank)
32
33 '' Close the outlet valve and open both inlet valves.
34
35 for every component in tank.output.cset(tank)
36 do
37 for every signal in input.sset(component)
38 with signal.type(signal) eq "command"
39 do
40 . let strength(signal) = -1
41 loop
42 loop
43 for every component in tank.input.cset(tank)
44 do
45 for every signal in input.sset(component)
46 with signal.type(signal) eq "command"
47 do
48 let strength(signal) - 1
49 loop
50 loop
51 go to 'leave'
52 otherwise
53 if level(tank) gt high.set(tank)
54 ''
55 '' Open the outlet valve and close both inlet valves.

Dynamic Simulation Model
254

56
57 for every component in tank.output.cset(tank)
58 do
59 for every signal in input.sset(component)
60 with signal.type(signal) eq "command"
61 do
62 let strength(signal) - 1
63 loop
64 loop
65 for every component in tank. input.cset(tank)
66 do
67 for every signal in input.sset(component)
68 with signal.type(signal) eq "command"
69 do
70 let strength(signal) - -1
71 loop
72 loop
73 go to 'leave'
74 otherwise

* 75 ''
76 '' If the level of the tank is in the operating range,
77 '' open the outlet valve(unitl) and the inlet valve from
78 '' unit2, but close the inlet valve from unit3.
79 '

80 for every component in tank.output.cset(tank)
81 do
82 for every signal in input.sset(component)

* 83 with signal.type(signal) eq "command"
84 do
85 let strength(signal) = 1
86 loop
87 loop
88 for every component in tank. input.cset(tank)
89 do

• 90 if name(component) eq "unit2"
91 for every signal in input.sset(component)
92 with sigitaa.type(signcij eq "coe.uand"
93 do
94 let strength(signal) - 1
95 loop
96 else
97 if name(component) eq "unit3"

* 98 for every signal in input.sset(component)
99 with signal.type(signal) eq "command"

100 do
101 let strength(signal) - -1
102 loop
103 always
104 always
105 loop

* 106 'leave'
107 call system.update
108 return
109
110 end ''tank.update

0

Dynamic Simulation Model 255

1 routine water.level(tank)
2 11
3 '' This routine supplies the integration rule for the continuous
4 '' variable level of the tank.
5 II

6 define tank as a pointer variable
7 let d.level(tank) = net.flow.rate(tank)*1440.0
8
9 '' We have left the time step as days and are reading flow rates

10 '' as meter level change per minute thus the factor of 1440 above.
11 go

* 12 end "water.level

Dynamic Simulation Model 256

Appendix D

Sample Input Files

Dynamic Simulation Model 257

SINGLE COMPONENT, EXP REPAIR AND FAILURE, DUAL REPAIR STATES
10000.00 Time of simulation

0 Type of run (0 for normal)
100 Number of trials
21 Number of time points
1 Type of time distribution
1 Number of components

COMPONENT passive operating 1 1 Component one
0.0 0.01 Failure data
1.0 100.0 1.0 Repair data

system process 1 Input signal
system process 1 Output signal

standby Initial system state
1 System success criteria
0 Number of external events

Dynamic Simulation Model 258

TWO OUT OF THREE PUMPS, EXPONENTIAL FAILURE AND REPAIR.
10000.00 Time of simulation

0 Type of run (0 for normal)
100 Number of trials
21 Number of time points
1 Type of time distribution
4 Number of componentsPUMPi active operating 3 1 Component one

0.0 0.01 Failure data
1.0 100.0 1.0 Repair data

system power 1 Input signal
system command 1 Input signal
system process 1 Input signal
VALVE process 1 Output signal

PUMP2 active operating 3 1 Component two
0.0 0.01 Failure data
1.0 100.0 1.0 Repair data

system power 1 Input signal
system command 1 Input signal
system process 1 Input signal
VALVE process I Output signal

PUMP3 active operating 3 1 Component three
0.0 0.01 Failure data
1.0 100.0 1.0 Repair data

system power 1 Input signal
system command 1 Input signal
system process 1 Input signal
VALVE process 1 Output signal

VALVE valve open 5 1 Component four
0.0 0.01 Failure data
1.0 100.0 1.0 Repair data

system power 1 Input signal
system command 1 Input signal
PUMP1 process 1 Input signal
PUMP2 process 1 Input signal
PUMP3 process 1 Input signal
system process 1 Output signal

standby Initial system state
1 System success criteria
0 Number of external events

* Dynamic Simulation Model 259

SIMULATION OF GO-FLOW LIGHT BULB PROBLEM
20.00 Time of simulation

0 Type of run (0 for normal)
1000 Number of trials

7 Number of time points
• 0 Type of time distribution

0.00
1.00
9.99
10.00 Time points
11.00
15.00
20.00

5 Number of components
* BATTERY passive standby 1 2 Component number one

0.1 0.0 Failure data
1.0 1.0 0.0 Repair data

system process 0 Input signal
SWITCH1 process 0 Output signal
SWITCH2 process 0 Output signal

SWITCHI switch open 3 1 Component number two
0.3 0.0 Failure data

* 1.0 1.0 0.0 Repair data
system command 0 Input signal
system power 1 Input signal
BATTERY process 0 Input signal
LIGHT1 process 0 Output signal

SWITCH2 switch open 3 1 Component number three
0.3 0.0 Failure data
1.0 1.0 0.0 Repair data

system command 0 Input signal
* system power 1 Input signal

BATTERY process 0 Input signal
LIGHT2 process 0 Output signal

LIGHTl passive standby 1 1 Component number four
0.2 0.001 Failure data
1.0 1.0 0.0 Repair data

SWITCH1 process 0 Input signal
system process 0 Output signal

LIGHT2 passive standby 1 1 Component number five
0.2 0.001 Failure data
1.0 1.0 0.0 Repair data

SWITCH2 process 0 Input signal
system process 0 Output signal

standby Initial system state
1 System success criteria
3 Number of external events

0.00 0 External event #I, Time, #Comps.
* 1 Number signals

system BATTERY process Signal
I New strength

0.00 0 External event #2, Time, #Comps.
1 Number signals

system SWITCH1 command Signal
-1 New strength

10.00 0 External event 43, Time, #Comps.
1 Number signals

* systei' SWITCH2 command Signal
-1 New strength

* Dynamic Simulation Model 260

TEST OF THE TANK PORTION OF THE PROGRAM
1000.00

0
1000
201

1
3

uniti valve open 3 1
0.0 0.00312

* 1.0 1.0 0.0
system power 1
tank process 1
tank command 1
nowhere process 1

unit2 valve open 3 1
0.0 0.00456
1.0 1.0 0.0

system power 1
system process 1
tank command 1
tank process 1

unit3 valve closed 3 1
* 0.0 0.0057

1.0 1.0 0.0
system power 1
system process 1
tank command -1
tank process 0

standby
1
0

"0

*Dynamic Simulation Model 261

Appendix E

Sample Output Files

Dynamic Simulation Model 262

SINGLE COMPONENT, EXP REPAIR AND FAILURE, DUAL REPAIR STATES
10000.00

0
100
21
1
1

COMPONENT passive operating 1
0. .01000
1.00000 100.00000 1.00000

system process 1
system process 1

standby
1
0

Dynamic Simulation Model 263

AFTER 100 TRIALS
AND

OVER A TIME PERIOD OF 10000 HOURS
THE AVERAGE SYSTEM UNAVAILABILITY IS AS FOLLOWS

The minimum is: .5510

The 1st percentile is: .5510

The 5th percentile is: .5804

The 25th percentile is: .6343

The 40th percentile is: .6538

The 50th percentile is: .6618

The 60th percentile is: .6740

The 75th percentile is: .7002

The 95th percentile is: .7440

The 99th percentile is: .7579

The maximum is: .7732

The mean is: .6644

The variance is: .0023

Dynamic Simulation Model 264

AFTER 100 TRIALS

THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS

TIME UNAVAILABILITY

0. 0.
500.00 .6300
1000.00 .7000
1500.00 .7000
2000.00 .6800
2500.00 .6700
3000.00 .6500
3500.00 .6700
4000.00 .7200
4500.00 .6900
5000.00 .6400
5500.00 .5900
6000.00 .6300
6500.00 .6800
7000.00 .6500
7500.00 .6800
8000.00 .6900
8500.00 .6800
9000.00 .6100
9500.00 .7000
10000.00 .6400

0

0

Dynamic Simulation Model 265

point 1 is .5510
point 2 is .5622
point 3 is .5700
point 4 is .5787
point 5 is .5804
point 6 is .5836
point 7 is .5883
point 8 is .5956
point 9 is .5962
point 10 is .5967
point 11 is .5976
point 12 is .5997
point 13 is .6006
point 14 is .6056
point 15 is .6095
point 16 is .6121
point 17 is .6122
point 18 is .6167
point 19 is .6179
point 20 is .6223
point 21 is .6233
point 22 is .6264
point 23 is .6321
point 24 is .6342
point 25 is .6343
point 26 is .6371
point 27 is .6374
point 28 is .6399
point 29 is .6414
point 30 is .6430
point 31 is .6444
point 32 is .6454
point 33 is .6464
point 34 is .6465
point 35 is .6477
point 36 is .6481
point 37 is .6494
point 38 is .6500
point 39 is .6525
koint 40 is .6538
point 41 is .6540
point 42 is .6544
point 43 is .6547
point 44 is .6555
point 45 is .6568
point 46 is .6586
point 47 is .6597
point 48 is .6617
point 49 is .6617
point 50 is .6618
point 51 is .6620
point 52 is .6626
point 53 is .6633

Dynamic Simulation Model 266

point 54 is .6647
point 55 is .6661
point 56 is .6671
point 57 is .6674
point 58 is .6680
point 59 is .6694
point 60 is .6740
point 61 is .6742
point 62 is .6756
point 63 is .6763
point 64 is .6821
point 65 is .6835
point 66 is .6850
point 67 is .6875
point 68 is .6876
point 69 is .6879
point 70 is .6922
point 71 is .6932
point 72 is .6967
point 73 is .6978
point 74 is .6996
point 75 is .7002
point 76 is .7023
point 77 is .7040
point 78 is .7049
point 79 is .7064
point 80 is .7064
point 81 is .7084
point 82 is .7085
point 83 is .7097
point 84 is .7136
point 85 is .7146
point 86 is .7180
point 87 is .7185
point 88 is .7218
point 89 is .7243
point 90 is .7248
point 91 is .7260
point 92 is .7273
point 93 is .7375
point 94 is .7416
point 95 is .7440
point 96 is .7502
point 97 is .7523
point 98 is .7541
point 99 is .7579
point 100 is .7732

*Dynamic Simulation Model 267

SIMULATION OF GO-FLOW LIGHT BULB PROBLEM
20.00

0
1000

7
0

0.
1.00
9.99

10.00
11.00
15.00
20.00

5
BATTERY passive standby 1 2

.10000 0.
1.00000 1.00000 0.

system process 0
SWITCH1 process 0
SWITCH2 process 0

SWITCH1 switch open 3 1
.30000 0.

1.00000 1.00000 0.
system command 0
system power 1
BATTERY process 0
LIGHT1 process 0

SWITCH2 switch open 3 1
.30000 0.

1.00000 1.00000 0.
system command 0
system power 1
BATTERY process 0
LIGHT2 process 0

LIGHT1 passive standby 1 1
.20000 .00100

1.00000 1.00000 0.
SWITCH1 process 0
system process 0

LIGHT2 passive standby 1 1
.20000 .00100

1.00000 1.00000 0.
SWITCH2 process 0
system process 0

standby
1
3

0. 0
1

system BATTERY process
1

0. 0
1

Dynamic Simulation Model 268

system SWITCH1 command
-1

10.00 0
1

system SWITCH2 command
-1

Dynamic Simulation Model 269

AFTER 1000 TRIALS

THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS

TIME UNAVAILABILITY

0. .5090
1.00 .5090
9.99 .5120

10.00 .2940
11.00 .2940
15.00 .2990
20.00 .3020

Dynamic Simulation Model 270

AFTER 1000 TRIALS
AND

OVER A TIME PERIOD OF 20 HOURS
THE AVERAGE SYSTEM UNAVAILABILITY IS AS FOLLOWS

The minimum is: .0000

The 1st percentile is: .0000

The 5th percentile is: .0000

The 25th percentile is: .0000

The 40th percentile is: .0000

The 50ti percentile is: .0044

The 60th percentile is: .0492

The 75th percentile is: 1.0000

The 95th percentile is: 1.0000

The 99th percentile is: 1.0000

The maximum is: 1.0000

The mean is: .3416

The variance is: .2024

* Dynamic Simulation Model 271

SIMULATION OF GO-FLOW LIGHT BULB PROBLEM
20.00

0
10000

* 7
0

0.
1.00
9.99

10.00
11.00
15.00
20.00

5
BATTERY passive standby 1 2

.10000 0.
1.00000 1.00000 0.

* system process 0
SWITCH1 process 0
SWITCH2 process 0

SWITCH1 switch open 3 1
.30000 0.

1.00000 1.00000 0.
* system command 0

system power 1
BATTERY process 0
LIGHT1 process 0

SWITCH2 switch open 3 1
.30000 0.

1.00000 1.00000 0.
* system command 0

system power 1
BATTERY process 0
LIGHT2 process 0

LIGHT1 passive standby 1 1
.20000 .00100

* 1.00000 1.00000 0.
SWITCH1 process 0
system process 0

LIGHT2 passive standby 1 1
.20000 .00100

1.00000, 1.00000 0.
SWITCH2 process 0

* system process 0
standby

1
3

0. 0
1

* system BATTERY process
10. 0

*Dynamic Simulation Model 272

system SWITCHi command

10.00 0
* 1

system SWITCH2 command

*Dynamic Simulation Model 273

AFTER10000 TRIALS

THE TIME DEPENDENT UNAVAILABILITY IS AS FOLLOWS

*TIME UNAVAILABILITY

0. .4993
1.00 .4999
9.99 .5052

*10.00 .2757
11.00 .2763
15.00 .2787
20.00 .2814

Dynamic Simulation Model 274

AFTER10000 TRIALS
AND

OVER A TIME PERIOD OF 20 HOURS
THE AVERAGE SYSTEM UNAIAILABILITY IS AS FOLLOWS

The minimum is: .0000

The 1st percentile is: .0000

The 5th percentile is: .0000

The 25th percentile is: .0000

The 40th percentile is: .0000

The 50th percentile is: .0033

The 60th percentile is: .0289

The 75th percentile is: 1.0000

The 95th percentile is: 1.0000

The 99th percentile is: 1.0000

The maximum is: 1.0000

The mean is: .3225

The variance is: .1944

Dynamic Simulation Model 275
S

TEST OF THE TANK PORTION OF THE PROGRAM
1000.00

0
1000
201

1
3

uniti valve open 3 1
0.0 0.00312
1.0 1.0 0.0

system power 1
* tank process 1

tank command 1
nowhere process 1

unit2 valve open 3 1
0.0 0.00456
1.0 1.0 0.0

* system power 1
system process 1
tank command 1
tank process 1

unit3 valve closed 3
0.0 0.0057

* 1 .0 system 1 .0power 0.0 1
system process 1
tank command -1
tank process 0

standby
1

* 0

S"

Dynamic Simulation Model 276
S

AFTER 1000 TRIALS

THE TIME DEPENDENT UNAVAILABILITY ANALYSIS IS AS FOLLOWS

TIME UNAVAILABILITY

0. 0.
5.00 0.
10.00 0.
15.00 0.

* 20.00 0.
25.00 .0010
30.00 .0010
35.00 .0040
40.00 .0060
45.00 .0 0
50.00 .0120
55.00 .0130
60.00 .0140
65.00 .0160
70.00 .0170
75.00 .0200
80.00 .0230

* 85.00 .0240
90.00 .0270
95.00 .0300
100.00 .0320
105.00 .0330
110.00 .0370

* 115.00 .0400
120.00 .0430
125.00 .0460
130.00 .0510
135.00 .0580
140.00 .0640
145.00 .0690

* 150.00 .0720
155.00 .0740
160.00 .0740
165.00 .0760
170.00 .0780
175.00 .0830

* 180.00 .0870
185.00 .0870
190.00 .0880
195.00 .0920
200.00 .0940
205.00 .0950
210.00 .1010
215.00 .1020
220.00 .1120
225.00 .1160
230.00 .1180
235.00 .1210
240.00 .1230
245.00 .1260
250.00 .1300

Dynamic Simulation Model 277

255.00 .1350
260.00 .1390
265.00 .1430
270.00 .1440
275.00 .1500
280.00 .1560
285.00 .1570
290.00 .1590
295.00 .1630
300.00 .1650
305.00 .1670
310.00 .1730
315.00 .1770
320.00 .1790
325.00 .1800
330.00 .1810
335.00 .1830
340.00 .1850
345.00 .1850
350.00 .1860
355.00 .1890
360.00 .1900
365.00 .1920
370.00 .1940
375.00 .1970
380.00 .2010
385.00 .2020
390.00 .2070
395.00 .2100
400.00 .2100
405.00 .2100
410.00 .2120
415.00 .2140
420.00 .2150
425.00 .2170
430.00 .2190
435.00 .2210
440.00 .2220
445.00 .2240
450.00 .2280
455.00 .2290
460.00 .2300

* 465.00 .2340
470.00 .2370
475.00 .2370
480.00 .2370
485.00 .2400
490.00 .2420
495.00 .2420
500.00 .2430
505.00 .2470
510.00 .2480
515.00 .2500
520.00 .2560
525.00 .2570

Dynamic Simulation Model 278

530.00 .2580
535.00 .2600
540.00 .2630
545.00 .2630
550.00 .2640
555.00 .2640
560.00 .2660
565.00 .2670
570.00 .2700
575.00 .2720
580.00 .2740
585.00 .2750
590.00 .2780
595.00 .2790
600.00 .2800
605.00 .2800
610.00 .2810
615.00 .2820
620.00 .2840
625.00 .2850
630.00 .2860
635.00 .2880
640.00 .2890
645.00 .2900
650.00 .2920
655.00 .2930
660.00 .2940
665.00 .2940
670.00 .2950
675.00 .2970
680.00 .2990
685.00 .3010
690.00 .3020
695.00 .3060
700.00 .3070
705.00 .3090
710.00 .3090
715.00 .3090
720.00 .3090
725.00 .3100
730.00 .3100
735.00 .3110
740.00 .3130
745.00 .3160
750.00 .3170
755.00 .3180
760.00 .3180
765.00 .3200
770.00 .3210
775.00 .3210
780.00 .3210
785.00 .3210
790.00 .3220
795.00 .3220
800.00 .3220

Dynamic Simulation Model 279

805.00 .3230
810.00 .3240
815.00 .3240
820.00 .3250
825.00 .3250
830.00 .3250
835.00 .3250
840.00 .3260
845.00 .3260
850.00 .3260

* 855.00 .3260
860.00 .3260
865.00 .3260
870.00 .3270
875.00 .3270
880.00 .3270

* 885.00 .3270
890.00 .3270
895.00 .3290
900.00 .3300
905.00 .3310
910.00 .3320
915.00 .3330

* 920.00 .3330
925.00 .3340
930.00 .3340
935.00 .3350
940.00 .3350
945.00 .3350

, 950.00 .3350
955.00 .3360
960.00 .3360
965.00 .3360
970.00 .3360
975.00 .3360
980.00 .3360

• 985.00 .3370
990.00 .3370
995.00 .3380
1000.00 .3380

Dynamic Simulation Model 280

AFTER 1000 TRIALS

THE UNAVAILABILITY DISTRIBUTION DATA IS AS FOLLOWS

The minimum is: .0000

The 1st percentile is: .0000

The 5th percentile is: .0000

The 25th percentile is: .0000

The 40th percentile is: .0000

The median is: .0000

The mean is: .2155

The 60th percentile is: .0000

The 75th percentile is: .4840

The 95th percentile is: .8701

The 99th percentile is: .9540

The maximum is: .9790

The variance is: .1085

